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A multiscale mechano-chemo-biological model is proposed to reveal the influences of
viscoelasticity on the growth and morphogenesis of soft biological tissues and organs.
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Highlights

A multiscale mechano-chemo-biological model is proposed for the growth and
morphogenesis of soft tissues.

Viscoelasticity significantly modulates the stress accumulation and growth of soft tissues
and organs.

Viscoelastic effects on the surface instability and morphogenesis of growing organoids are

revealed.
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Mechanobiological modeling of viscoelasticity in soft tissue
growth and morphogenesis
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Abstract

Most soft biological tissues feature distinct mechanical properties of viscoelasticity, which
play a significant role in their growth, development, and morphogenesis. In this paper, we
propose a mechanobiological viscoelastic model in the framework of thermodynamics. The
multiscale mechanisms underlying the viscoelasticity of tissues are clarified, such as
extracellular matrix composition and organization, cell types and states, dynamic cell-matrix
and cell—cell interactions, and active cytoskeleton evolution. This model enables us to elucidate
how viscoelastic effects modulate the growth and surface instability of soft tissues via coupled
mechano-chemo-biological regulatory mechanisms. The proposed constitutive model is
implemented into the finite element method, to explore the growth, stability, and morphological
evolution of tissues. Illustrative examples, including tumor growth and organoid development,
demonstrate that viscoelasticity can facilitate sustained tissue growth, and significantly
influences the critical conditions of surface wrinkling and the morphological evolution of
tissues. The results are consistent with relevant experimental observations. This study provides
a theoretical model for growing soft tissues with viscoelastic effects, and holds promise for

potential applications in clinical diagnosis and treatment of some diseases.

Keywords: Soft tissue; Growth; Viscoelasticity; Mechano-chemo-biological mechanism;

Instability; Morphological evolution.
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1. Introduction

Biological tissues coordinate a complex array of functions crucial for physiological
processes and structural integrity, which depend on the complicated yet precisely designed
interplay between biochemical compositions and mechanical properties (Cambria et al., 2024;
McGinn et al., 2021). During growth and development, tissues exhibit both recoverable elastic
deformation and time-dependent viscous behavior, known as viscoelasticity. Their mechanical
properties may vary in response to external stimuli, biochemical signals, and pathological
conditions (Katira et al., 2013; Persson et al., 2020). In recent years, the effects of viscoelastic
properties on tissue development and pathology have gathered extensive attention (Clément et

al., 2017; Fan et al., 2024).

Viscoelasticity is an intrinsic mechanical property of biological tissues (Fig. 1), e.g., brain,
skin, cartilage, blood vessels, and solid tumors (Hadzipasic et al., 2023; Zhang et al., 2021).
The viscoelastic properties of soft tissues originate from the combination of multiscale
mechano-chemo-biological mechanisms, including active cytoskeleton evolution, cell density,
cell division and arrangements, extracellular matrix compositions, and the duration of external
forces (Huang et al., 2019). Due to the specificity and complexity of these mechanisms, the
viscoelastic properties of different tissues exhibit a distinct diversity. For illustration, the
different stress relaxation rates of a few representative soft tissues are shown in Fig. la.
Viscoelasticity plays a crucial role in volumetric growth, morphological development,
biological functions, and responses to various mechanical and biochemical cues (Mierke, 2022).
During embryonic development, for example, the posterior tissues undergo viscoelastic
changes from a fluid-like state to a solid-like one, which allows for the elongation of the
vertebrate body axis (Mongera et al., 2018). The viscoelastic properties of the matrix can
influence the proliferation and differentiation of stem cells by regulating integrin-based
adhesion, actomyosin contractility, and nuclear localization of Yes-associated protein (YAP)
(Chaudhuri et al., 2016). In wound healing, the fluidization of tissue, corresponding to a
reduction in cell junctional tension and cell—cell adhesion, allows for faster wound closure
through increased cell movement and rearrangement (Tetley et al., 2019). Appropriate
viscoelastic properties may also enhance tissue regeneration by promoting favorable cellular
activities (Patino Vargas et al., 2022), which may reduce scar thickness and ensure the
restoration of tissue function. Pathological changes, such as cancer progression, fibrosis, and
tissue degeneration are also closely related to viscoelasticity. Tumor cells can sense tissue

stiffness and viscoelasticity, which may affect their biochemical signaling pathways and
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proliferation (Fan et al., 2024). Furthermore, viscosity may affect the epigenetics of cancer
cells to form mechanical memory (Li et al., 2024), which impacts the development of cancer
(Beraetal., 2022). Fibrosis is associated with alterations in viscoelastic properties. Monitoring
viscoelasticity changes may aid in the early diagnosis of fibrosis before significant tissue
stiffening occurs (Long et al., 2021; Reiter et al., 2021). Brain episodic memory performance
is related to hippocampal viscoelasticity, and it can serve as a biomarker corresponding to
cognitive decline due to aging or brain diseases (Hiscox et al., 2021). In the field of tissue
engineering, viscoelastic properties are critical for designing scaffolds that can mimic the
mechanical behavior of native tissues (Foroughi et al., 2023). Therefore, it is significant to
elucidate the mechanical, chemical, and biological mechanisms underlying the viscoelastic
effects of tissues, which affect their deformation, development, adaptation, and structural
integrity under different physiological and pathological conditions. Recent studies also suggest
that understanding viscoelastic effects may help develop novel diagnostic and therapeutic

strategies (Chang et al., 2023; Wu et al., 2022).
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Fig. 1. Viscoelasticity of soft biological tissues. (a) Stress relaxation curves of tissues and collagen gels,
which demonstrate significant viscoelastic properties, adapted from (Chaudhuri et al., 2020). (b)
Viscoelasticity of two brain tumors, with different moduli and phase angles of viscosity; adapted from
(Streitberger et al., 2020). The two tumors have different growth rates and invasion capabilities.

Much experimental effort has been directed toward exploring the viscoelastic properties
effects and mechanisms of tissues. Such experimental techniques as rheometer, atomic force
microscopy (AFM), and magnetic resonance elastography (MRE) have been employed to

quantify the viscoelastic properties of various tissues (Huang et al., 2019; Zhang et al., 2021).
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The rheometer determines the viscoelastic properties by applying oscillatory shear stresses to
a tissue and measuring the resultant strains under different loading conditions
. AFM offers high-resolution mapping of static or dynamic mechanical properties at the
cellular and subcellular levels, enabling the study of local variations within tissues
. MRE provides a non-invasive method to assess the mechanical
properties of tissues in vitro and in vivo. This capability allows for monitoring changes in
viscoelastic properties induced by disease progression or treatment, such as liver fibrosis, brain
tumors, and cardiovascular diseases . These
investigations are valuable for understanding the mechanical behavior of tissues under different
physiological and pathological conditions. Studies using these techniques have revealed that
viscoelasticity can regulate spatiotemporal tissue organization, driving tissue growth dynamics
and symmetry-breaking instabilities like buckling, folding, and fingering
. In vitro experiments have shown that tumors grow more rapidly in the viscoelastic
environment compared to their elastic counterpart, with viscoelasticity leading to early
branching or morphological instability . Different types of brain
tumors exhibit significantly different viscoelastic properties (Fig. 1b), leading to their different
growth rates and invasive behaviors. Consequently, targeting the viscoelastic properties of the
tumor microenvironment could be a novel approach to inhibit tumor growth and metastasis
. These experimental findings provide a foundation for theoretical
modeling to capture the complex interplay among viscoelasticity, tissue growth, and

morphological evolution.

The biomechanical mass stress relation proposed in the 1990s states that
growth and remodeling mechanics should account for the changes in the stress-free
configuration due to mass changes. It provides a framework for modeling the growth and
remodeling of living tissues. On this basis, quite a few hyperelastic theoretical models have
been developed to describe the growth of tissues. Usually, these models introduce a set of
kinematic and kinetic equations to capture the complex interactions between mechanical forces
and biological processes . The hyperelastic continuum model
provides a valuable framework for understanding the elastic behavior of tissues and their
responses to mechanical forces. Residual stresses, arising from differential and incompatible
growth and deformation, play a pivotal role in the growth and various morphogenetic processes,
such as tissue folding and branching . The porous matrix

biomechanical model, which treats the tissue as a composite material consisting of a solid
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matrix and a fluid-filled pore space, has also been employed to study growth-induced solid
stresses within tissues . The coupling effects between the
solid and fluid phases are important for the growth and morphological evolution of tissues
under different physiological and pathological conditions. The incremental hyperelastic
constitutive method, incorporating constraint conditions such as incompressibility and
interfacial continuity, has been used in the analysis of growth-induced instabilities
. It characterizes how tissues respond
to incremental changes in volumetric growth and mechanical loading, providing a more
nuanced understanding of the conditions that lead to instability and subsequent development
of complex tissue patterns. These previous significant works mainly concentrate on the elastic
components or mechanical interactions, and they have not examined the time-dependent
viscoelastic behaviors of tissues. Recently, a finite hyper-viscoelastic model has been
developed to capture the nonlinear viscous effects of soft tissues under complex loading
. The Prony-series viscoelastic model is employed to capture the complex
viscoelastic behaviors of different brain regions . The Saffman-Taylor
instability model has been applied to explain why brain tumors with higher viscosity are more
aggressive and infiltrative . The buckling instability of epithelial
tissues is a key issue in developmental biology. A multiscale biomechanical study elucidated
that viscoelasticity contributes significantly to both the buckling mode and the postbuckling
phase transition of an epithelial monolayer . These viscoelastic models help
understand how tissues gradually respond to mechanical stimuli over time and the long-term
viscoelastic behavior of tissues. However, viscoelastic models should be combined with
growth laws to fully capture the interplay between time-dependent mechanical stimuli, tissue

growth, and buckling instability processes.

In this paper, by considering the mechano-chemo-biological mechanisms involved in the
development of soft tissues, we present a mechanobiological viscoelastic model to investigate
the viscoelastic effects on their growth, instability, and morphological evolution. This paper is
organized as follows. In Section 2, we present the mechano-chemo-biological mechanisms of
tissue viscoelasticity, and then formulate a mechanobiological growth model with viscoelastic
and nutrition concertation effects. In Section 3, through the spherical shell-core model for a
tumor spheroid, we examine the impact of viscoelasticity on the residual stress accumulation
and growth rate. Section 4 analyzes the influences of viscoelasticity on the instability and

morphological evolution of the spherical organoid with differential growth. This is
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accomplished through the finite element method by implementing the proposed constitutive

model. Finally, the main conclusions drawn from this study are summarized in Section 5.

2. Mechanobiological model

2.1. Mechano-chemo-biological mechanisms of tissue viscoelasticity

Both elastic and viscous properties are significant for soft tissues to withstand and adapt to
their dynamic biomechanical environments. The viscoelasticity of tissues has been studied in
many experiments (Fig. 2a), which results from complicated mechano-chemo-biological
mechanisms (Fig. 2b). Viscoelasticity can change with growth and development under
pathological and physiological conditions (Cox, 2021; Huang et al., 2019). For instance, a
compact arrangement of cells exhibits more solid-like properties, whereas a dispersed
arrangement displays more fluid-like behavior (Mao and Wickstrom, 2024). The fluid-to-solid
transformation may play an important role in embryonic development (Mongera et al., 2018).
Due to cell differentiation, proliferation, and carcinogenesis, tissues may contain various types
of cells with different structural and mechanical properties in order to achieve their biological
functions (Hang et al., 2022). The extracellular matrix (ECM) provides mechanical, chemical,
and structural support to tissues. The density and orientation of ECM fibrils, such as collagen
and elastin, play a significant role in the variation of tissue viscoelastic properties (Chaudhuri
etal., 2020; Lyuetal., 2023). In addition, the interactions of cell-ECM and cell—cell, mediated
by integrins, cadherins and other adhesion molecules, are vital for maintaining the integrity and
distributing the mechanical stresses in the tissue. (Mao and Wickstrom, 2024). At the
subcellular scale, the evolution of the cytoskeleton (Pegoraro et al., 2017) and cell cortex (Yin
et al., 2022) may significantly influence the viscoelastic properties of cells and thereby
determine how tissues respond to external stimuli. Therefore, the types and arrangements of
cells within the tissue, ECM properties, cell interactions and actin cytoskeleton evolution
collectively determine the macroscale viscoelastic property of a tissue (Fig. 2b). In Appendix

B, we try to clarify how these multiscale mechanisms modulate the viscoelastic parameters.

To accurately characterize the viscoelastic behavior of soft tissues, it is crucial to utilize a
theoretical model that can encapsulate these multifaceted interactions. Some simple
viscoelastic models consisting of springs and dashpots have been used to describe the
viscoelastic properties of tissues (Elosegui-Artola et al., 2022; Mongera et al., 2023). In this

study, the specific viscoelastic properties are tentatively modeled by a three-parameter
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viscoelastic model (Fig. 2c), which is a combination of spring and dashpot elements (Lin and
Wei, 2020). This model serves as a bridge, linking the mechano-chemo-biological properties
at the cellular and molecular levels to the observable macroscopic viscoelastic behavior of the
tissue. The variations in the relaxation modulus and relaxation time are correlated with these
multiscale mechanisms and their changes. These variations further affect the values of the
viscoelastic moduli, which can be formulated, for example, as G(t) = G, + Gexp (—t G, /$).
This function will be employed to distinguish the specific types of tissues and to characterize
the temporal evolution of their viscoelastic behavior. Furthermore, this viscoelastic model will

be integrated into the tissue growth law in the following section.
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Fig. 2. Mechanisms and modeling of viscoelastic properties of soft tissues. (a) Viscoelastic behavior of
tissues tested by many experimental techniques. (b) Cellular and molecular mechanisms underlying the
elastic and viscoelastic behaviors of a tissue. (c¢) A three-parameter viscoelastic model is here taken as an
example to characterize the viscoelasticity of different tissues and changes in viscoelasticity, through the

different viscoelastic moduli and relaxation times.

2.2. Mechanobiological growth model with viscoelastic effects

Consider a body in the three-dimensional Euclidean space E3, as shown in Fig. 3, where
(1, is the initial (reference) configuration (at time t;), and Q is the current configuration (at

time t). X and x denote the positions of a material point in the two configurations, respectively.
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For a tissue with differential volume growth and large deformation, we adopt the
decomposition of the deformation gradient tensor F (Rodriguez et al., 1994; Zhou et al., 2018).

It is expressed as
F=F, F,, (1

where F,; denotes the mechanical deformation tensor with the viscoelastic effect, and F,
denotes the growth tensor. A stress-free intermediate configuration (), is also defined, which
is often incompatible in the case of differential growth, as illustrated in Fig. 3. Due to the
viscoelastic effect, i.e., stress relaxation and creep, the deformation tensor evolves, leading to
the evolution of both the intermediate and current configurations. The synergistic effects of
elastic and viscoelastic deformation and volumetric growth may greatly influence the
morphological instability and evolutions of tissues under various physiological and

pathological conditions, as we will show below.

F=F (1,)'F,

F=F(1)F,
/_+
X —>x=xX, 0 Viscoelasticity
(Stress relaxation,
creep, ...)

F (1)

Stress-free state

Fig. 3. Schematic diagram of multiplicative decomposition. The growth tensor F; at time t; leads to the
current configuration (¢, ), and the corresponding deformation gradient is decomposed into F, (¢;) and F;.
The situation is similar for at time t,. A material point with the coordinate vector X in the initial
configuration is mapped to x in the current configuration by y(X,t). The viscoelasticity leads to time-
dependent deformation, which evolves with time.

2.2.1. Mass balance equation

In general, tissue growth can occur through coupled volumetric growth and material flux
across its boundary 0. Let the volumetric growth function py, denote the mass increase due
to cell proliferation or ECM synthesis per unit volume in the current configuration, where

Yg(x) is the growth rate function and p=dm/dV is the mass density. The flux of material

through the boundary corresponds to the vector Rf. Thus, the mass balance is

10
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% fﬂ(dm) = % fﬂ(pdV) = fﬂpyng + fa QRf -ndS. (2)

The volume rate is proportional to the divergence of the velocity field, that is,
i (dV) = divvdV, (3)
dt
where v denotes the velocity vector. By applying the divergence theorem, the mass balance
equation for a growing continuum can be obtained from Eq. (2) as
p + pdivv = py, + divRy, (4)

where the dot above the variable stands for the material time derivative. In the case of slow
growth, the flux through the boundary can be neglected (Ben Amar and Goriely, 2005; Goriely,

2017), we have
p + pdivv = py,. (5)

Let py and p, denote the densities in the initial state and the virtual stress-free state,

respectively. The mass growth can also be written as

d
Ej (pgdV,) = fpgygdv:q' (6)
0 )

where p =dmg/dV, =dm/dVy, ], = det(F,), dV; = J,dVy and ] = ],/ = det(F,)det(F,)

are the measurement of the volume change. dV}, denotes the initial volume element. When the
same mass density is assumed for the new tissue generated by growth and the original one, that

is, the constant density growth p, = p4, we obtain
Vg =Jg')g = tr(Fg" - Ky), (7)

where j; = J,tr(F; ! - ;) is the Jacobi’s formula.

2.2.2. Momentum balance equation

We assume that the newly added material due to tissue growth has the same properties as

the original one. Thus, the linear momentum balance of the growing tissue can be expressed as

d
—fpvdV =f tdS+fpde+fpygvdV, (8)
dt Jgo 20 Q Q

where t and f denote the surface traction and the body force, respectively. The surface traction

vector is related to the Cauchy stress, t = o - n, where n is the unit outward normal to the

11
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surface. Using the divergence theorem and Eq. (5), the differential form of Eq. (8) gives, that

is, the balance of linear momentum (Rahman et al., 2017)
pv = div(aT) + pf. (9)

Furthermore, the acceleration can be ignored for slow growth. In the absence of the body

force, then Eq. (9) becomes
div(e) = 0. (10)

The balance between the angular momentum and the applied torques for a growing continuum

can be expressed as

d
—fpxxvdV=fxxtdS+fpx><de+fpygxxvdV. (11)
dt Jo a0 Q Q

The transport and localization procedure lead to the symmetric condition for the Cauchy stress

tensorg = ol

2.2.3. Energy and entropy equation

The kinetic energy equation for an isothermal growth at a physiological temperature can be

expressed as (Ciarletta et al.,, 2012)
d
—f KdV = P; + P, (12)
dt Jq

where K is the kinetic energy per unit volume, P; and P, denote the internal and external rates

of mechanical work, respectively. Thus, they read

p, = —ja: DAV, (13)
Q

1
Pez—fpf-vdV+f t-vdS+—fpygv-vdV, (14)
Q 20 2Jq

where D = 1/2 [F F 1+ (F- F_l)T] is the deformation rate.

Then, the first law of thermodynamics is applied to a growing continuum as the

conversation of energy principle, that is,

d
af (pe + K)dV =P, + f pygedV + f by:LydV + Q, (15)
Q Q Q

12
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where e is the internal energy per unit current mass, L, = Fg -Fy 1 denotes the growth rate
tensor. b, denotes the homeostatic stress, which represents the biochemical and cellular
activity involved in the growth process (Buskohl et al., 2014), and it work-conjugate to the
growth rate tensor (DiCarlo and Quiligotti, 2002). Q represents the total heat input rate, which

is given as
Q=fpwdy_j q-nds, (16)
Q 20

where w is the heat input rate per unit current mass, q is the heat flux across the surface element.

Therefore, the energy balance equation reads
pé =0:D+b,:L; + pw — div(q). 17)

Entropy measures the disorder induced by microscopic fluctuations. For a growing

continuum, the integral form of the entropy equation can be expressed as

d ) 1
—fpstzfpygst+fpndV++f p—dV—f —q-ndS, (18)
dt Jo Q Q aT aaT

where s and 1 denote the entropy and the entropy production rate per unit current mass,
respectively, T is the absolute temperature. Applying the divergence theorem and the transport

equation Eq. (S5), it has

s = PP qivd
pS == d1VT+pn. (19)

The second law of thermodynamics states that the internal entropy change rate of a system
should not be smaller than the flow of entropy transferred to that system, that is n > 0.

Therefore, from Eq. (19), the Clausius—Duhem inequality requires that

p§ > pT‘” - div%. (20)

The relation between the specific internal energy e and the specific free energy ¥ can be

obtained from the Legendre transformation,
Y =e—Ts. (21)

Combining Egs. (17), (20) and (21), we obtain the inequality

. .1
pY <o:D+by Ly — psT — 7a grad(T). (22)

13
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2.2.4. Viscoelastic constitutive relation of growing tissues
Assume that the deformation gradient F;;(t) and temperature T (t) are continuous in the
interval 0 < t < oo, that is, it follows from the Stone-Weierstrass theorem. Referring to the

polynomial expansion of the free energy in terms of Stieltjes integrals

, pY can be simplified as

t oT
p¢=p¢o+f A(t—)—dc f pu-0GE«

ddﬁ d(z + -, (23)

t
+w/c(Fa.t)—f f K(t—cl,t—@a—cla—cz

where 1, is the mean free energy, T,(t) is the temperature difference from the base
temperature Ty, and T = Ty + T,. W, denotes the deformation energy of per unit volume in the

current configuration, and its incompressible viscoelastic expression is assumed as W, =
%f_too G(t— Q) -{d[tr(F, - F) — 3]/ d{}d{, where G(t) is the relaxation function. k(t) is
another appropriate relaxation function form of the mechanical property. In the expansion, the

coupling of viscoelastic deformation and temperature is ignored. The integration functions are

continuous for t > 0 and are assumed to vanish identically for ¢ < 0. Substituting Eq.

into and doing the indicated differentiation with respect to t, one obtains
oW, . i
-T T -T , g-T -TY.
(_AO_aF : a)-Fa+(Fa-a-Fa F;T+b, - F;T):F,

[ﬁo K(t—CO)—dC ps|T
l j A(t—O d(+ ﬁ( —() dC+pd+—lq grad(T)| = 0. (24)

In the derivation, the symmetry of the stress and deformation gradient tensor is used. A, =
A|;—, is the initial stress and it should be zero in this study. 8, = 8|¢, is the initial entropy. d
denotes the rate of energy dissipation. Let W as the deformation energy of per unit volume in
the virtual configuration, so W = J,W.. This inequality should be valid for any F, and T, that
is,

e 25)

ps = Bo + k * dTy, (26)

14
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where * denotes the Stieltjes convolution symbol, f_too 0] 3—?d( = ¢ * dg. Also, the following

inequality can be obtained
(Fy-0-F;"-F;"+b, -F;7):F, = (F] -0 -F;"+by):L; > 0. (27)

The fourth term of Eq. (24) can result in the dissipation inequality as in the

thermoviscoelasticity (Christensen and Naghdi, 1967) and it will not be repeated here.

For illustration, we assume that L, has the form
L, = Zfi(cl- — o) (FT -0 - FsT +by). (28)
i

One possible growth model can be obtained, which is a stress-related and nutrient-limited
growth model, that is, the local nutrient concentration and residual stresses determine the tissue
growth rate. where c; is the concentration of the constituent i, f;(c;) denotes a positive-definite
scalar function describing the chemical kinetics, and c; is the nutrient threshold, below which

the tissue reduced in size or dies due to lack of nutrient availability. (o + by ) drives the tissue

growth and it acts as the biomechanical driving force.

The inequality of Eq. (27) can be satisfied by Eq. (28). Thus Eq. (28) can be written as

B, Fl = Zfi(ci —cio) (FT -0 - F;T + by), (29)
i

which is the growth evolution law. Notably, the growth governing equations are similar to the
elastic equations (Xue et al., 2016; Yin et al., 2019), but the stress distribution is related to the

viscoelastic properties of tissues.

2.3. Theoretical solution

Many biological tissues have approximately spherical shapes, e.g., tumors and organoids,
thus, the spherical model is often used for biological studies (Goricly, 2017). Additionally, the
cells at the core may receive less oxygen and nutrients as the sphere grows larger, which leads
to the slowed or arrested growth of the core (Walker et al., 2023a). The differential growth rate
can also reflect important biological processes. Differential growth rates between the surface
and core of spherical structures can lead to important morphogenetic events during tissue
development (Eskandari and Kuhl, 2015). In this study, the symmetric growth, deformation,
and instability of a spherical shell-core structure are considered as an example to illustrate the

prominent features of viscoelastic effects. The shell has inner and outer radii R;, R,, in the initial
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configuration and grows into a sphere shell with inner and outer radii 7;,7, in the current
configuration, as shown in Fig. 4. The interface between the core and the shell is perfectly
bonded. The spherical coordinates in the current configuration are (r, 8, ¢), and the normal
bases are (er, €y, e(p). The corresponding coordinates in the initial configuration are (R, 0, ®).
Thus, the deformation gradient tensor is

(30)

ar r r)
JR"R’R)’

F = diag (
Assuming that in the initial stage of growth, the deformation preserves the spherical symmetry,
that is,

F, = diag(gr, 90, 9s), (31)

where the condition g,, = gy corresponds to the isotropic growth, which means the dilation of

original sphere. The mechanical deformation part of the deformation gradient is written as,

F, = diag(a,, ag, ap). (32)
Cell spheriod Initial configuration Current configuration
b (undeformed) (growth and deformed)
Continuum R r,
model ' F=F F,
_—

_
r
(R, O, ®}| R, {r 0. o} .

Fig. 4. The spherical shell-core model for a cellular spheroid with differential growth. The shell has the
inner and outer radii R; and R, in the initial configuration, and it grows to a spherical shell 13,7, in the
current configuration, respectively. If the core is non-growing, it has R; = r;. The spherical coordinates
(R,0,®) and (1, 6, @) are used.

From Eq. (1), one has a, = (0r/ 0R)/g, and ay = (r/R)/ge. The approximation of

volume incompressibility requires that /, = 1 and @, = a?. Then, the component of F can be

obtained as

ar R?
3R r_zgrgg' (33)

By integration, the outer radius is
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R
r3=r?+ 3f gr g6R*dR, (34)

R;

and the deformation gradient component can be given as

1
R 3
(2 +3 ;. 9- 93R*dR)
Qg = : : (35)
goR
Taking a time derivative for Eq. and changing the integration variable, the radius

evolution equation can be obtained as follows
R

R "1 "1
2 =f Jr 96R*dR +2f Jo 9og-R*dR =f —g'rrzdr+2f g—g'grzdr. (36)
r r; 40

R; R i Ir i

Using Eq. , the growth rates in the spherical coordinate system can be obtained as

gr = Zfi(ci - Cio)(o-r + bg)gr:

Jdo = Z fi(ci — cio) (o9 + by)ge - (37)

To focus on the mechanical cues for tissue growth, we consider a spherical shell perfectly
bonded on the incompressible non-growing core. The case of isotropic and constant growth
(gr = gg = g) 1s considered as an example. For constant growth, the
growth rate is determined by the overall stress state. In this study, the growth equation is

simplified as

g = fy(c = c)[tr(G) + bylg, (38)

where 0; denotes the average of the principle stress components along the radial position,
tr(G;) = 0, + dg + G,. ¢y denotes the critical nutrition density, and the function f;(c — ¢,)

describes the effect of nutrient density.

Because of the symmetry, there are only two non-independent stress components in the
spherical coordinates, that is, [o] = diag(o,, 09, g5). Referring to Eq. , the mechanical

equilibrium in the spherical coordinate is written as

do, 2
o + ;(ar —ag) = 0. (39)
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For the incompressible viscoelastic model, W can be written in a form similar to the neo-

Hookean material (Khajehsaeid et al., 2014; Narooei and Arman, 2018)

" 2 2 2 _ t -4 2 _
w=s 6 - pieitaite 3)dc=l] 6 -T2 g (4o

2)_ d¢ 2)_ d¢

where @ = ay. The relation can be written in the Stieltjes convolution form, that is
1
w = EG *d(a™* + 2a? — 3). (41)

where * denotes the Stieltjes convolution symbol. The relaxation function G(t) can be

approximated by the Prony series as

i

G(t) = Gy, + i G, exp (;—t) (42)
i=1

where 7;=¢§/ G, denotes the relaxation time. If we use a simplified viscoelastic model, as
shown in Fig. 2¢, which is the standard three-parameter model with relaxation time 7,=¢/ Gy,
the relaxation function becomes
—t
G(t) =Gy + Giexp|— ). (43)
T
g

It has the initial modulus G, = G, + G; at time t = 0. In the case of isotropic growth (g, =
Je = g) and using the stress-free boundary condition a,.(R,, t) = 0, the stress components can

be obtained from Eq. (39) and (25) as

1 1
o, = EG xdla ™ +4a™1) — EG * d(ay* + 4a;t),

r 4o,

opg = 0, + 25, = Or + G *d(a? +a™), (44)
where
1
(B LR (45)
U TR TR

The theoretical solution for a growing spherical shell-core structure has been obtained,
capturing both its elastic and time-dependent deformation behavior. In the following sections,
this model will be applied to specific case studies, focusing on the impact of viscoelasticity on

tissue growth and morphological evolution.
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3. Growth of a viscoelastic spherical tumor

In growing tumors, the mechanical stress and strain fields, the nutrient and chemical fields,
and the growth rates are strongly coupled. The viscoelastic nature of tumors constitutes a
pivotal biomechanical attribute that significantly influences tumorigenesis, progression, and
metastatic potential (Streitberger et al., 2020; Walker et al., 2023b). Although solid tumors
usually evolve irregular shapes as they grow, their initial shapes can be approximated to be
spherical. A central necrosis may form in a solid tumor due to the diminished supply of oxygen
and nutrients in the core region. As an illustrative case, therefore, the effects of viscoelasticity
on tumor growth will be elucidated by using the spherical shell-core model in this section. This
model is based on the simplified assumption that the core is incompressible and non-growing,

while the outer surface is free to focus on viscoelastic effects.

3.1. Stress field induced by growth

(a) T T T T (b) 0.0F
at (R+R )2
0.09 o1k
v} -
= @)
E0.06L =_-02}
o 0.06 &
0.3+
0.03}
— G/G_=1.70 04}
— G/G,=1 —— G/G, =250 at (R;+R )2
0.00| — G,/G, =125 —— G /G, =5.00] 05
0 3 6 9 12 0 3 6 9 12
Time ¢/ 1, Time ¢/,
(c) T T T T T T (d) 0.0F T T T T ™3
16+ :
atr=>5t, 0.6 atr=>5t, -
212 G/G,=1 1 . — G/G,=1
S —— G/G,=1.25 Q .12t —— G,/G,=125 -
o —— G,/G,=1.70 o — G,/G,=1.70
0.8 — G/G,=2.50 A — G,/G,=2.50
—— G,/G,=5.00 181 —— G/G,=5.00
04 L from R to R i from R to R,
P 24F ' .
0.0 1 L 1 1 1 1] -3.0 L 1 1 1 1 1
05 0.6 0.7 08 09 1.0 05 06 07 08 09 10
R/R, R/R,

Fig. 5. The stress evolution in a growing spherical shell-core tumor, with geometry R;/R,= 0.5 and an
incompressible non-growing core, that is, the inner surface is fixed and the outer surface is free. A larger
G/ G indicates more obvious viscoelasticity and stress relaxation, and the difference Gy — G, denotes the
modulus that can be relaxed. All cases have the same initial modulus G, and G,/ G, = 1 represents the

pure elastic case with modulus G, and no relaxation. (a, b) The stresses in the med-layer of the spherical
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shell change over time for different viscoelastic properties. (c, d) The stresses along the shell thickness at

t = 51, for varying viscoelastic properties.

The differential growth of tissues inherently generates mechanical residual stresses, which
evolve with time. The stresses, arising from the continuous cellular proliferation,
differentiation, and extracellular matrix remodeling, significantly modulate the biomechanical
environment and subsequently influence further growth. The stress accumulation rate is
determined by the mechanical properties of the tissue. Fig. 5 illustrates the contrast of residual
stresses induced during the processes of elastic and viscoelastic tumor growths. In the elastic
tumor (with modulus G, and no relaxation, thus is written as G,/ G, = 1), stress accumulation
increases over time, whereas viscoelasticity facilitates stress relaxation (Fig. 5a-b). Tumors
with higher viscoelastic relaxation (larger G,/ G, ) exhibit slower stress accumulation. As the
viscoelastic properties vary, there is a noticeable difference in the stress distribution along the
shell thickness (Fig. 5c-d). Stress magnitudes decrease across the spherical shell as the
viscoelastic relaxation increases (G,/G, becomes larger). This indicates that tumors with
greater viscoelasticity exhibit more pronounced stress relaxation, thereby reducing the residual
stress accumulation more effectively than less viscoelastic or purely elastic tumors. In practice,
different tumors present various levels of stress relaxation or viscoelasticity, which may

significantly influence their growth and development (Walker et al., 2023b).

(@) 00 (b) 0.0 - - - -
— t/1=4
— 1/ 7,=6
0.1 01F — t/7=8 .
—_— 1/ 7,=10

-t/ =12

0 5 10 15 20 1 2 3 4 5 o

Time ¢/, Modulus ratio G,/ G|

Fig. 6. The sum of the three principal stresses in a growing spherical shell-core tumor, with geometry
R;/R, = 0.5 and an incompressible non-growing core. (a) The variations of the mean principal stresses
with time for different viscoelastic properties. (b) The sum of principal stresses versus modulus ratio at
different times. All cases have the same initial modulus &;,. A larger &,/ G,, corresponds to more obvious
viscoelasticity and greater stress relaxation.

The growth equation in Eq. (38) is formulated in terms of the sum of three principal

stresses. The accumulation of the total stress is faster in elastic tumors than that in viscoelastic
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tumors ( ). Tumors with lower viscoelasticity (smaller G,/ G.,) exhibit a higher rate of
stress accumulation, as indicated by the curves in . The relation between the stress and
viscoelastic modulus ratio in demonstrates that the stress accumulation decreases as the
viscoelasticity becomes more obvious at any given time. The elastic and viscoelastic properties
of tumors determine their capacity for stress management. Elastic tumors maintain higher stress
levels over time, whereas viscoelastic tumors experience lower stress levels due to substantial
stress relaxation. These findings suggest that viscoelasticity can modify the overall stress level,
which may be critical during tumor development. Furthermore, the overall stress state can

influence the growth process as described in Eq.

3.2. Growth ratio

Viscoelasticity can significantly influence tumor growth by modulating the stress level,
which in turn affects the growth rate. illustrates the effect of varying viscoelastic
properties on the growth ratio and volume, with sufficient nutrient availability. The growth
ratio refers to the relative increase in the tumor size. The growth process would stop where the
residual stress reaches the maximum value, as described by Eq. . For more viscoelastic
tumors (larger Gy/ G,), the growth ratio and the tumor volume exhibit a more pronounced
increase with time ( and ). The relations between the growth ratio (or tumor
volume) and the modulus ratio can present the effect of viscoelasticity more intuitively (

and ). The growth ratio and volume are greater for more viscoelastic tumors at any
given time. The model predicts that the viscoelastic properties are conducive to the growth
because of the stress relaxation, which is consistent with the results that residual stresses can
inhibit tumor growth . In addition, the correlation between
tumor viscoelasticity and growth rate is in accordance with the reported active particle
simulations (Fig. S2), as well as with experimental observations that more fluid glioblastomas

grow faster than the more solid meningiomas in the brain

During the processes of tissue development, wound healing, and lesion formation, the
viscoelastic properties of tissues can undergo alteration through cell proliferation,
differentiation, and remodeling of ECM ( ). This mechanism significantly impacts the
subsequent tissue growth. Our model can demonstrate how the changes in the viscoelastic
properties affect the growth behavior. For spherical shell-core tumor growth, if the
viscoelasticity of a tumor increases as it grows (Gy/ G, becomes larger), the growth of the

tumor is prolonged and the steady-state volume increases. ( , the green bold curve). In
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tumors with higher viscoelasticity, the stresses can be relaxed more effectively, leading to
sustained growth compared to those with lower viscoelasticity. Conversely, the tumors with
increasing elasticity (Gy/ G, becomes smaller) achieve smaller steady-state volumes and cease
growing earlier (Fig. 8a, the brown bold curve). These results indicate that the variation in the
tissue viscoelasticity during the growth process may establish a feedback loop that further

influences tumor progression (Sauer et al., 2023).
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Fig. 7. The growth ratio and volume of a spherical shell-core tumor, with geometryR;/R, = 0.5 and an
incompressible non-growing core. (a) The variations of the growth ratio with time for different viscoelastic
properties. (b) The growth ratio versus the modulus ratio at different times. (¢) The tumor volume over time

for different viscoelastic properties. (d) The tumor volume versus the modulus ratio at different times.

Mechanical factors, including the stresses and moduli, play a significant role in tissue
growth. Additionally, tissue growth is influenced by the availability of nutrients (Soleimani et
al., 2020; Xueetal., 2016). Eq. (38) describes mechanobiological growth, which is determined
by both the stress state and nutrient density. The “nutrient density” includes the availability of
essential nutrients, including glucose, amino acids, oxygen, and growth factors. We employ a

total nutrient density function to represent these biochemical factors. The interaction between
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mechanical stress and nutrient density in growth is illustrated in Fig. &b. In this discussion, the
nutrient is set and will be fully depleted when V' / V;, = 5. This setting primarily serves to
explore the interplay between mechanical signals and chemical cues during tissue growth. As
the nutrients are consumed, the growth rate slows down, but the higher viscoelasticity allows
a faster growth rate due to the less accumulation of residual stress. Due to this coupling
mechanism, the tumor growth would stop once nutrients are exhausted, even if the critical
residual stress has not yet been reached. In addition, the effect of nutrient consumption on
growth rate is illustrated by comparison with the sufficient nutrient availability condition (Fig.
S3). Consequently, both the residual stress and nutrient density modulate the growth of

viscoelastic tumors.

(a) T T T T T (b) 13 T T T T T T
20+ G,/ G, decrease from 5 to 2 — G/G, =1 —— G/G =170
e G/ G_increase from 1.25 to 2 1 G/G,=1.25 G/G,=2.50
oo 19 G/G,=5.00.
50 151 G,/ G,=1.25 i 50 g | Dash curves: 2
z — G,/G, =2 E cannot continue growth
—_— = because of nutrition lack
g G,/G =35 g 71 \ A i
S 10+ . 2 Without enough nutritions .+~ .-
5f e
5t 3 3t
- nl ___— With enough nutritions
0 1 1 1 1 1 L 1 1 1 1 1 7

0 3 6 9 12 0 2 4 6 8 10
Time ¢/, Time t/ 1,

Fig. 8. Influence of viscoelasticity and nutrients on mechanobiological growth. A spherical shell-core
structure with geometry R;/R,= 0.5 and an incompressible non-growing core. (a) Changes in
viscoelasticity during growth, resulting in different trends of growth volume. (b) The growth volume of the
spherical shell over time, as determined by the residual stress and nutrient availability. In this analysis, the
total nutrient supply is constant and the remaining nutrient density is inversely proportional to the growth
volume.

3.3. Mechano-chemo-biological mechanisms of viscoelastic growth

Tumor growth is regulated by a complex interplay between mechanical properties and
biochemical factors (Sun et al., 2022). Both mechanical stress and viscoelasticity influence
cellular behavior through mechano-transduction pathways, and nutrient availability modulates
metabolic activities that are essential for cell proliferation and ECM production. The
synergistic effects of these factors are crucial for the development and morphogenesis of tissues.
The multiscale mechano-chemo-biological mechanism that modulates tissue growth is

schematized in Fig. 9. When the cells experience changes in the viscoelastic environment, their
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mechano-transduction pathways are activated (Fan et al., 2024). These pathways convert
mechanical signals into biological signals, which may regulate gene expression and cell
proliferation. Integrins, transmembrane proteins, are responsible for sensing mechanical
signals. The mechanical signal activates the Rho/ROCK signaling pathway, which can cause
the dynamic evolution of the cytoskeleton. Subsequently, the transcription factor co-activators
YAP and transcriptional coactivator with PDZ-binding motif (TAZ) are translocated to the
nucleus to induce gene expression (Dupont et al., 2011), thereby promoting cell proliferation
and tissue growth. The growth of tissue produces residual stresses, which inhibit further growth.
While viscoelastic properties, due to the stress relaxation, can slow down the accumulation of
residual stress, thereby facilitating sustained growth. The introduction of these integrated
mechano-chemo-biological mechanisms deepens our understanding of tissue growth at
multiple length scales, from the molecular, cellular to the tissue scale. This may inspire
strategies to adjust various physiological factors for specific therapeutic techniques, which may

also be valuable in the fields of tissue engineering and regenerative medicine.

Viscoelastic @ -
: . Stress @ Residual
microenvironment . =
relaxation & stress
q -
Integrln siBrog0r2209900000, Time
ﬂ'é LibRob668866888444 “e: ?e,,?”
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Fig. 9. Multiscale mechano-chemo-biological mechanisms of viscoelastic tissue growth. Integrins sense
viscoelasticity, and then influence cell proliferation, which is also affected by nutrient availability. The
growth produces residual stresses that inhibit further growth, but the stress will be partly relaxed due to
viscoelasticity.

4. Morphological evolution of a growing viscoelastic organoid

Morphogenesis is a key issue in the development of tissues and organs (Yu and Li, 2024).
Residual stresses accumulate during tissue growth, and mechanobiological instability may
occur when a tissue experiences compressive stresses that exceed a certain threshold, leading

to the formation of various surface patterns. On the basis of the above-formulated theory, we
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now investigate how viscoelasticity regulates surface instability and the postbuckling

morphological evolution of soft tissues.

For illustration, we employ a growing viscoelastic spherical organoid model to elucidate
the instabilities arising from tissue growth, with particular attention to the effects of
viscoelasticity. For simplicity, the core of the organoid is assumed to be incompressible and
non-growing, reflecting the nutrient and oxygen gradients established due to diffusion
limitations in the central regions. The peripheral region, conversely, exhibits an enhanced rate
of cell proliferation and tissue expansion . This peripheral growth
significantly contributes to the surface tension, potentially leading to buckling at the periphery

. The buckling and postbuckling behaviors are simulated
using the finite element method (Abaqus). In the simulation, the four-node axisymmetric
elements (CAX4R) are used to discretize the axisymmetric spherical shell-core structure. In
the calculations, the mechanical deformation tensor F, can be obtained, and then the stresses
are determined from F, and the viscoelastic modulus of Eq. (43). Finally, the growth state

variable is calculated according to Eq. , and updated with g|;4ar = gl¢ + g|:AL.

4.1. Organoids with various viscoelastic properties

We now examine the effects of viscoelastic relaxation on the surface instability of a
homogeneous spherical organoid during growth. shows that, for the same long-term
modulus G,,, viscoelastic growth enters the buckling instability more quickly than purely
elastic growth, which is consistent with experimental observations

. It should be noted that the elastic case studied in this section corresponds to the long-
term modulus G, , and the viscoelastic cases have the same long-term modulus. The
morphological evolution of spherical organoids varies with different relaxation times. The
occurrence of buckling and the corresponding buckling mode depend on the viscoelastic
relaxation rate, even if the modulus ratio remains constant (G,/G,, = 4, ). In the case
of slow relaxation, residual stresses accumulate rapidly over time, leading to earlier buckling
and larger deformation. For medium relaxation, buckling occurs at a moderate growth stage,
with a higher buckling mode compared to the case of slow relaxation. The buckling of the fast
relaxation case occurs much later, and the patterns resemble those of the elastic case (with the
long-term modulus G,), as the fast relaxation allows the residual stresses to dissipate quickly,
making the relaxation modulus G; almost irrelevant. The phase diagram ( ) indicates

that the relaxation rate determines the critical growth ratio (the maximum growth ratio before
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buckling, which is extracted as the mean growth ratio of the last pre-buckling simulation step
and the subsequent buckling step.) and the different buckling modes. Organoids with a slower
relaxation rate buckle at lower growth ratios because of their faster stress accumulation. This
relation highlights the importance of viscoelastic relaxation in determining the stability of
growing organoids. Fig. 10c compares the results of our model with previous research, showing
that viscoelasticity is associated with a more expeditious morphological evolution, i.e., a faster
reduction in circularity compared to elasticity. Circularity, together with morphology and
buckling mode, characterizes the morphological evolution process. For the reference results,
the circularity is not equal to one because the initial state of their growing spherical tissue is
not a perfect sphere. Besides, the thickness ratio and the modulus ratio between the spherical
shell and core materials also affect the buckling behavior, which has been discussed in previous
literatures (Holland et al., 2017; Huang et al., 2023; Li et al., 2011). This aspect will not be

explored in the present study, which instead concentrates on the effect of viscoelasticity.
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Fig. 10. Instability of the homogeneous viscoelastic spherical shell-core organoids, with G/ G, = 4,
geometry R,/ R, = 0.9, and an incompressible non-growing core whose modulus is Gggre, and Go/ Goore =
3. (a) The morphology changes of spherical shell-core profile over time, with different relaxation times
resulting in different buckling modes. (b) Phase diagram of the critical buckling growth ratio versus
relaxation time, with the same long-term modulus G,,. (c) Comparison with the results in other studies, and
our results are calculated with viscoelastic parameters ¥, = 5, Go/ Go, = 4. The circularity in our results is
calculated by 47 (Sarea) / (Leircumference)®» Where Sypeq is the area of the middle section, and Iy cumference
is its circumference. The reference results are from (Elosegui-Artola et al., 2022), and the growth time is

normalized. The relaxation time 74 and growth time £ are made dimensionless by the characteristic growth

time 1 / ( fgo Goo) and the same below, where fgo denotes the initial nutrient effect as in Eq. (38).
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The viscoelastic properties of organoids can exert an influence on their morphological
evolution after buckling. Simulation results ( ) show the impact of viscoelastic properties
(the relaxation modulus ratio and relaxation time) on the morphology of a growing spherical
organoid. illustrates the morphology of the middle section of the spherical shell-core
after buckling, revealing that slower relaxation times lead to more pronounced deformation
compared to faster relaxation times. In the slower relaxation time cases, different modulus
ratios can lead to different buckling patterns and modes. When the relaxation time is very fast,
the initial modulus G, will quickly relax to the long-term modulus G,,, making the increase in
the initial modulus (also the modulus ratio G,/ G, in this discussion) has little effect on the
overall effective modulus. Circularity, a measure of how closely a shape resembles a perfect
circle, is used to measure the rate of morphological evolution. illustrates the circularity
of the middle section of the shell-core for the same evolution time after buckling. The
circularity exhibits different trends depending on the relaxation time and modulus. The slow
relaxation case corresponds to a steeper curve, indicating a faster rate of evolution. In contrast,
the evolution rate caused by the modulus ratio changes is almost negligible in the fast relaxation
case. Additionally, the critical growth ratio is also related to the viscoelastic properties (

). A lower critical growth ratio indicates that buckling occurs at a smaller growth volume.
This figure indicates that a higher modulus ratio and slower relaxation rate lead to a smaller
critical growth ratio, suggesting that only a smaller growth is needed to induce buckling in

stiffer tissues.

The relaxation modulus, along with the relaxation time, determines the effective modulus
perceived during growth. These properties can influence the buckling behavior of the organoid
and the resulting morphological changes. As illustrated in , the results show how
viscoelastic properties affect the buckling mode number and critical growth ratio. Different
relaxation times and viscoelastic modulus ratios lead to different effective moduli (can be
calculated from Eq. (43)). A larger modulus ratio and slower relaxation time lead to fewer
mode numbers ( ) and smaller critical growth ratios ( ), because this condition
corresponds to a larger effective modulus and slower stress relaxation, which consequently
results in a more rapid accumulation of residual stress. Additionally, higher stability (a larger
volume before buckling, corresponding to larger critical growth ratios in ) corresponds
to more complex buckling patterns (higher mode numbers). Conversely, lower stability
(smaller critical growth ratios) is associated with simpler buckling patterns (lower mode

numbers). These relations suggest that the buckling behavior and stability of growing organoids
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can be regulated by adjusting the viscoelastic modulus ratio and relaxation time. This
understanding may help to develop more effective tissue engineering strategies for the design
of artificial tissues and the treatment of diseases characterized by abnormal tissue mechanics.
It is also possible that the regulation of viscoelasticity may control the growth and
morphogenesis of tissue during natural development, but this hypothesis requires further

experimental verification.
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Fig. 11. Morphological evolution of the homogeneous viscoelastic spherical organoids for the same time
after buckling (after unit characteristic growth time), with an incompressible non-growing core, the shell
geometry R,/ R, = 0.9, and the same long-term modulus G,,. (a) Morphology of the spherical shell-core
profile for different instantaneous moduli G at different relaxation times. A slower relaxation time results
in a larger effective modulus. (b) Circularity of the middle section of the spherical shell-core for different
relaxation times over the modulus ratio G,/ G, with the same evolution time after buckling. (c) Critical
growth ratios (when buckling occurs) over the modulus ratio G,/ G, for different relaxation times. The
third configuration in the first row in (a) is symmetrical to the fourth because the rotationally symmetric
buckling pattern indicates the same buckling mode for symmetrical geometry. In (b) and (c), the solid line
corresponds to a B-spline curve, which is a smooth interpolation of the simulated data points.
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Fig. 12. Phase diagram of the initial buckling mode number and critical growth ratio, with R,/ R, = 0.9,
and an incompressible non-growing core. (a) Distribution of mode numbers as a function of viscoelastic
modulus and relaxation time. (b) Distribution of critical growth ratios (when buckling occurs) as a function

of viscoelastic modulus and relaxation time.

4.2. Viscoelasticity changes during development

During the process of growth, development, and pathological changes, tissues frequently
undergo changes in their material properties. Changes in viscoelasticity often play a significant
role and can serve as important physiological and pathological indicators

. This discussion explores the impact of the transition between
fast and slow relaxation times on morphology evolution. displays how changes in
relaxation time influence the morphological evolution of a growing organoid spheroid. The
morphology of the spherical shell evolves as the relaxation time changes from fast to slow (

) or slow to fast ( ). As the relaxation slows down from a very fast rate, the resulting
morphology (the first row of ) differs significantly from the cases with constant
relaxation time (the second row of ). The evolution process is accelerated when the
relaxation time is slowed, as evidenced by the change of the circularity trends ( ). The
rate of change in relaxation time (Fast-to-slow-1 vs Fast-to-slow-2 in ) also influences
the morphological evolution path and its final state. A faster rate of change results in a faster
evolution process. When the relaxation time becomes faster from a slow state, the
morphological evolution slows down (the first row of ), and the buckling mode
changes during the evolution process. This leads to the nonmonotonic reduction of the
circularity curve in . These differences are driven by variations in the accumulation
and dissipation of residual stresses within the tissue. As the viscoelastic properties undergo a
transition, the stress accumulation and distribution adjust, leading to different deformation
patterns and evolution rates. These results establish a clear link between the dynamic change
in viscoelasticity during the development and morphological evolution of organoids. The rate
and direction of viscoelasticity changes significantly influence the stability and morphological
evolution. This viscoelastic effect on morphological evolution can also be extracted through
some experimental observations (Fig. S4). Our findings contribute to a deeper understanding
of mechanobiology and offer promising avenues for developing innovative strategies to
manipulate tissue growth and address various pathological conditions. For example, adjustable
viscoelasticity of biomaterials used in tissue scaffolds may have the potential to enhance their
performance in promoting desired tissue growth and integration. In addition, the specific

viscoelastic parameters in the theoretical and computational models should be determined by
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further series of experimental tests, and then the theoretical and experimental results can be

quantitatively compared.
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Fig. 13. Morphological evolution of the spherical shell whose viscoelasticity changes during the growth,
with Gy/ G, = 4, R;/R, = 0.9, and an incompressible non-growing core. (a) Morphology of the middle
section over time as the relaxation time changes from fast to slow. (b) The circularity of the middle section
for different situations: constant viscoelasticity (Slow and Fast) and relaxation time changing from fast to
slow at different rates (Fast-to-slow-1 and Fast-to-slow-2, and Fast-to-slow-2 corresponds to faster
changing rate). (c) Morphology of the middle section over time as the relaxation time changes from slow
to fast. (d) Circularity of the middle section for different situations: constant viscoelasticity (Slow and Fast)

and relaxation time changes from slow to fast (Slow-to-fast).

4.3. Different viscoelastic properties in different regions

Tissues can exhibit different viscoelastic properties across different regions, and these
spatial variations can significantly influence their morphological development (Hiscox et al.,
2020; Streitberger et al., 2020). Fig. 14a introduces the spatially varying viscoelastic properties
within an organoid spheroid and investigates their effects on morphological evolution. The
spherical shell model is divided into distinct viscoelastic zones, and each zone exhibits different
viscoelastic moduli and relaxation times. In this study, three different cases are considered,

where organoids are divided into four, six and ten distinct parts. As observed, the buckling
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morphology of the spherical shell shows spatial differences, including the degree of folding
and buckling mode number. When the tissue has different viscoelastic properties in different
zones, it may grow in various patterns, which might be significant for its function. Our model
is capable of simulating how different viscoelastic properties in various regions can modulate
tissue folding patterns. This simple model can be further designed to simulate the
heterogeneous nature of biological tissues, such as the brain organoid, which exhibit visible
differences in folding patterns due to variations in mechanical properties ( ). The
viscoelastic nature of brain tissue is essential for the formation of cortical folds during
development, and it can influence the patterns of gyri and sulci that emerge as the brain grows

. The spatiotemporal variation in brain viscoelasticity during development
is thought to affect neural maturation in different brain regions. This variation contributes to
the distinct developmental trajectories of various brain structures, and the brain tissue generally
stiffens with maturation, with different regions exhibiting varying degrees of change in their
viscoelastic properties . Our mechanobiological model demonstrates
that variations in viscoelastic properties across the tissue can significantly influence its overall
morphology. These findings underscore the importance of understanding how regional
differences in mechanical properties contribute to the structural and functional diversity of

tissues.

The influence of viscoelasticity on morphological evolution can be analyzed in terms of
stress accumulation and relaxation dynamics. A region with a slower relaxation rate tends to
accumulate residual stress more rapidly because it has less capacity for stress relaxation. This
rapid accumulation of stress may not provide sufficient time for the stress to be distributed
throughout the tissue, while the adjacent region may have a faster stress relaxation rate. These
differences could lead to stress concentrations in certain regions and more abrupt and varied
buckling patterns. Further research is needed to establish a clearer relation between specific
folding patterns and viscoelastic properties. This could involve collecting additional
experimental data or developing more sophisticated computational models that incorporate a

wider range of biological factors.
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(a) Axisymmetric sphere with different viscoelastic zones (b) Experimental brain

logranoid morphogenis
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Fig. 14. Morphological evolution of the spherical shell with different viscoelastic parts, with geometry
Ri;/R,= 0.9, and an incompressible non-growing core. (a) Schematic diagram of spherical shells with
different viscoelastic parts and the finite element simulation of the morphological evolution. All parts have
the same modulus, i.e., Gy/G, = 2, but different relaxation times. The relaxation times for the four parts
are 7=0.1, 0.3, 0.4, 0.6, for the six parts are 7=0.1, 0.3, 0.4, 0.6, 0.85, 1.2, and for the ten parts are 7=0.1,
1.5,0.2,1.6,0.1, 1.2, 0.6, 3.0, 0.1, 0.3. (b) Experimental results of the brain or organoid, showing different
degrees of folding in different regions, adapted from (Karzbrun et al., 2018) and (Hiscox et al., 2020) .

5. Conclusions

In this paper, we have formulated a mechanobiological model to investigate the influences
of viscoelastic properties of soft biological tissues. It provides a theoretical framework for
studying the viscoelastic effects on the growth and morphogenesis of soft tissues. Using a
spherical shell-core tumor model, it is found that tumors with the same initial modulus but
higher viscoelasticity exhibit slower residual stress accumulation, leading to increased growth
rates. In addition, nutrient availability also modulates the growth process, with reduced nutrient
concentrations leading to decelerated growth over time. The finite element method is used to
investigate how viscoelastic properties influence the stability and morphological evolution of
growing organoids. The results indicate that for organoids with the same long-term modulus
(storage modulus, G, ), those with higher viscoelasticity enter buckling earlier, in consistency
with relevant experimental results (Elosegui-Artola et al., 2022). The relaxation modulus and
time determine the buckling mode and subsequent deformation. Furthermore, the variations of
viscoelasticity significantly affect growth stability and overall morphology, with changes in
viscoelastic properties altering the speed of morphological evolution and potentially shifting
the buckling mode. Additionally, organoids with region-specific viscoelastic properties exhibit
distinct buckling patterns, providing insight into the diverse morphologies observed during

organ development.
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By bridging the gap between experimental observations and theoretical modeling, the
present theory may help understand the morpho-mechanics of soft tissues (e.g., brains, tumors,
and organs-on-a-chip), with potential implications for tissue engineering and disease treatment
strategies. Although our model has incorporated some key factors of elasticity and
viscoelasticity, the precise functional relation between viscoelastic properties and these factors
needs to be elucidated through quantitative series experiments in the future. Besides, there are
still many other important mechanisms that may influence the morphological evolution of

tissues, such as specific genes or long-term biochemical signaling.
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Appendix A. Transport equation

Let po and p, denote densities of the tissue in the initial and virtual states, respectively.
The element mass in the virtual state is dmy = p,dVj;. Because no mass increases between

the virtual and current states, the mass relation is
dm, = dm, pgdVy = pdV = pjdV, = pj,dV (s1)
Thus,
= pJa (SZ)

where dV}, and dVj; denote the initial and virtual volume elements, respectively. It has dV =
JdVy and dVj; = JodVy = Ji 1dV. Besides, the mass growth without flux from the boundaries

is,
d
7 (PAV) = pyydV (S3)

Let A denote a quality per unit current mass. By using ApdV = ApJdV,, one has
dA dA
(ApdV) = —pdV + A — (pdV) —pdV + Apy,dV (54)

and its integration gives

dA
Apd = Mc1V+ f ApdivvdV = f P dV + j Py, AdV (S5)

which is the growth rate related transport equation.

Appendix B. Multiscale viscoelastic model

Viscoelasticity of tissue can be expressed as the effects of several key factors at multiscale.
These effects may be simplified and abstracted as a modulus function, i.e., G =
f(D,C,M,A,R), where D,C, M, A, and R denote the effect of cell density, cell types, ECM
property, adhesion effect, and cytoskeleton evolution, respectively (Fig. Sla). In the
following, we illustrate the relations between viscoelastic parameters and the cell-to-tissue

phenomena.



Experimental studies have shown that the cell density varies in different regions of
zebrafish embryos along the AP axis (Mongera et al., 2023). The modulus and viscosity
decrease as the extracellular spaces between cells increase (Fig. S2b). Therefore, we can

simply give the relation between cell density and viscoelastic parameter, as

ky £ ks

GDoo ) (56)

= ) =
Ddensity Ddensity

where Gp, and & are the long-term modulus and viscosity parameter due to the effect of

cell density, and k; and k, are two parameters to be determined.

For the adhesion effect, drawing on the relation between cell-cell tension and tissue

viscosity in the previous study (Fig. S1c), we can simply give

EA = k3 eXp(Ac—adhesion) + k4 eXp(Ai—adhesion) , (87)

where ¢4 is the viscosity parameter due to the effect of adhesion, A._,dnesion a4 Ai_adhesion
correspond to cell-cell adhesion and cell-matrix adhesion, respectively, k; and k, are
parameters to be determined. For the ECM effect, previous studies have shown that the
stiffness and viscosity increase with as liver fibrosis (Fan et al., 2024; Lyu et al., 2023; Fig.
S1d). Therefore, we try to give the relation

Gmoo = KsMn—fivrit + k6 Mn—crosslinkers

$m = k7My_fibrit + kgMn—crosslinker» (58)
where G, and &y, are the long-term modulus and viscosity parameter of ECM, My _ipril
and M, _.rosslinker cOrrespond to the density of fibrils and crosslinkers, respectively, ks~kg

are parameters to be determined.

Different types of cells have various stiffness and viscosity. Simply, we can use the
homogenization method to obtain the modulus and viscosity in a representative element, as

=1 GiV; _ =18V

Geoo = , ,
¢ % ¢ %

(59)

where G, and &; are the long-term modulus and the viscosity parameter that combine
different types of cells, G;, &; and V; are the long-term modulus, viscosity parameter and
volume of the i type cell, V is the total volume of the representative element. The
cytoskeleton and cell contractility can influence the viscoelasticity of a cell (Galie et al., 2022;
Yin et al., 2022). This effect in captured in G; and &;, while the quantitative metrics for

viscoelastic parameters need further study.
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Fig. S1. Multiscale viscoelastic mechanisms. (a) Methodology to correlate macroscopic viscoelasticity
with underlying multiscale mechanisms. (b) Viscoelasticity varies with cell density in different parts of
zebrafish embryos, where A-PSM: presomitic mesoderm in the AP axis, P-PSM: posterior presomitic
mesoderm, MPZ: lateral part of the mesodermal progenitor zone (Mongera et al., 2023). (c) Influence of
cell-cell adhesion on tissue viscosity (Petridou et al., 2021). (d) Schematic of ECM fibrils and crosslinking
(left) and modulation of crosslinking on collagen matrix (right, Lyu et al., 2023). Longer relaxation time

71/2 corresponds to larger viscosity.

Egs. (S6-S9) represent different scale influences on viscoelasticity. To combine these
multiscale effects, we may borrow ideas from the cross-scale viscoelasticity theory (Ding et
al., 2024; Lin et al., 2021; Lin and Wei, 2022, 2020). We write the total potential energy

density as
1
w = E(GD * dep * dep + Gy * dey * dey + Gy * deyy * dey + G * dee x dee),  (S10)

where G, denotes the viscoelastic modulus related to different effects, €4 is the
corresponding strain, * is the Stieltjes convolution symbol. The Stieltjes convolution is
defined as ¢ * dop = f_too ¢(t — O @(Q)dt. Strains from different scales can be related. If we
give an effective strain &, the corresponding effective stress can be g, = 0w /d¢,. The stress

can be written as g, = G * de,, where G is the effective modulus, as

G = f(D,C,M,AR,?). (S11)



It should consist of a purely elastic part (long-term modulus G, ), a viscous part (viscosity ¢),
and a related elastic part G; at least to characterize the relaxation time together with . To
explicitly show the effect of viscoelasticity, we combine these parameters based on the three-
parameter viscoelastic model (Fig. 2c). Therefore, the effective modulus can be written as
G(t) = Gy + Gyexp (—t G; /). The changes in viscoelastic modulus and relaxation time
during tissue development (Section 4, Fig. 10) are related to multiscale mechanisms. For
example, the increase in modulus and viscosity may correspond to the process of fibrosis or

cell jamming.

However, the influence of multiscale phenomena cannot be completely separated. For
example, the difference in cell density in Fig. S1b would involve cell-cell adhesion. The
change in ECM property would also influence cell-ECM adhesion. This section only presents
a rough equivalent thought and methodology. Further experimental and theoretical studies
are needed to capture the complex relation between multiscale mechanisms and viscoelastic

parameters.

Appendix C. Viscoelastic effects on tissue growth

Our model predicts that viscoelastic properties facilitate tissue growth by reducing the
rate of residual stress accumulation. This is consistent with the stress-induced growth studies,
where smaller residual stress is beneficial for growth. Furthermore, we compare our results
with the simulation results reported by Elosegui-Artola et al., as shown in Fig. S2. Their
study investigates tissue growth in viscoelastic and elastic environments using a four-
parameter viscoelastic model, and the observed trends regarding the influence of
viscoelasticity on growth rates are consistent with our findings. Besides, different viscoelastic
models have been used to characterize the viscoelasticity of tissues, such as the Maxwell
model, the three-parameter model, the four-parameter model, and the generalized Maxwell

model. In this paper, we use the widely used three-parameter model.
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Fig. S2. Comparison between our results and some previous studies on the viscoelastic effects on tissue
growth. (a) Comparison between our model and the active particle simulations made by Elosegui-Artola
et al. (b) The four-parameter viscoelastic parameter and an active particle model used by Elosegui-Artola
et al.

Appendix D. Effects of nutrition consumption

The mechanobiological growth of soft biological tissues is determined by both stress state
and nutrient density. Nutrients can include the availability of essential nutrients, including
glucose, amino acids, oxygen, and growth factors. We use a total nutrient density function to
represent these biochemical factors. The comparison between the sufficient and limited
nutrient availability conditions is illustrated in Fig. S3. It shows that limited nutrient

availability may significantly slow the growth rate.
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Fig. S3. Effects of nutrient density on tissue growth. The solid curves correspond to the sufficient nutrient
availability condition, i.e., nutrient density does not decrease during growth. The dash-dot curves
correspond to the limited nutrient availability condition, where the total nutrient supply remains constant,
and the nutrient density decreases linearly as the growth volume increases.



Appendix E. Effects of viscoelastic changes on morphological evolution

During tissue development, viscoelasticity can change, which may be be significant for
the morphological evolution (Iwashita et al., 2014; Petridou and Heisenberg, 2019;
Thompson et al., 2019). Fig. S4 shows the brain folding progress (Fig. S4a) and
viscoelasticity during tissue development (Fig. S4b-c). It indicates that the viscoelasticity
changes can influence the morphological changes, in qualitative consistency with our
simulations, as shown in Fig.13. Studying the effect of relaxation time transitions on

morphological evolution would require detailed parameterization in experiments.
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Fig. S4. Changes of viscoelasticity in developing brains and embryos. (a) Cortical folding progress is
shown after birth in preterm human (Garcia et al., 2018). (b) Viscosity of zebrafish early embryos from
the blastula (3 hpf) to the dome stage (4.3 hpf) (Petridou and Heisenberg, 2019). (c) Stiffness of
developing mice cortex, where E12.5, E14.5, E16.5, and E18.5 denote different embryonic stages
(Iwashita et al., 2014).
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