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A multiscale mechano-chemo-biological model is proposed to reveal the influences of 5 
viscoelasticity on the growth and morphogenesis of soft biological tissues and organs.  6 
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Highlights 9 

 A multiscale mechano-chemo-biological model is proposed for the growth and 10 

morphogenesis of soft tissues. 11 

 Viscoelasticity significantly modulates the stress accumulation and growth of soft tissues 12 

and organs.   13 

 Viscoelastic effects on the surface instability and morphogenesis of growing organoids are 14 

revealed. 15 

 16 
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Abstract 26 

Most soft biological tissues feature distinct mechanical properties of viscoelasticity, which 27 

play a significant role in their growth, development, and morphogenesis. In this paper, we 28 

propose a mechanobiological viscoelastic model in the framework of thermodynamics. The 29 

multiscale mechanisms underlying the viscoelasticity of tissues are clarified, such as 30 

extracellular matrix composition and organization, cell types and states, dynamic cell–matrix 31 

and cell–cell interactions, and active cytoskeleton evolution. This model enables us to elucidate 32 

how viscoelastic effects modulate the growth and surface instability of soft tissues via coupled 33 

mechano-chemo-biological regulatory mechanisms. The proposed constitutive model is 34 

implemented into the finite element method, to explore the growth, stability, and morphological 35 

evolution of tissues. Illustrative examples, including tumor growth and organoid development, 36 

demonstrate that viscoelasticity can facilitate sustained tissue growth, and significantly 37 

influences the critical conditions of surface wrinkling and the morphological evolution of 38 

tissues. The results are consistent with relevant experimental observations. This study provides 39 

a theoretical model for growing soft tissues with viscoelastic effects, and holds promise for 40 

potential applications in clinical diagnosis and treatment of some diseases.  41 
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1. Introduction 45 

Biological tissues coordinate a complex array of functions crucial for physiological 46 

processes and structural integrity, which depend on the complicated yet precisely designed 47 

interplay between biochemical compositions and mechanical properties (Cambria et al., 2024; 48 

McGinn et al., 2021). During growth and development, tissues exhibit both recoverable elastic 49 

deformation and time-dependent viscous behavior, known as viscoelasticity. Their mechanical 50 

properties may vary in response to external stimuli, biochemical signals, and pathological 51 

conditions (Katira et al., 2013; Persson et al., 2020). In recent years, the effects of viscoelastic 52 

properties on tissue development and pathology have gathered extensive attention (Clément et 53 

al., 2017; Fan et al., 2024).  54 

Viscoelasticity is an intrinsic mechanical property of biological tissues (Fig. 1), e.g., brain, 55 

skin, cartilage, blood vessels, and solid tumors (Hadzipasic et al., 2023; Zhang et al., 2021). 56 

The viscoelastic properties of soft tissues originate from the combination of multiscale 57 

mechano-chemo-biological mechanisms, including active cytoskeleton evolution, cell density, 58 

cell division and arrangements, extracellular matrix compositions, and the duration of external 59 

forces (Huang et al., 2019). Due to the specificity and complexity of these mechanisms, the 60 

viscoelastic properties of different tissues exhibit a distinct diversity. For illustration, the 61 

different stress relaxation rates of a few representative soft tissues are shown in Fig. 1a. 62 

Viscoelasticity plays a crucial role in volumetric growth, morphological development, 63 

biological functions, and responses to various mechanical and biochemical cues (Mierke, 2022). 64 

During embryonic development, for example, the posterior tissues undergo viscoelastic 65 

changes from a fluid-like state to a solid-like one, which allows for the elongation of the 66 

vertebrate body axis (Mongera et al., 2018). The viscoelastic properties of the matrix can 67 

influence the proliferation and differentiation of stem cells by regulating integrin-based 68 

adhesion, actomyosin contractility, and nuclear localization of Yes-associated protein (YAP) 69 

(Chaudhuri et al., 2016). In wound healing, the fluidization of tissue, corresponding to a 70 

reduction in cell junctional tension and cell–cell adhesion, allows for faster wound closure 71 

through increased cell movement and rearrangement (Tetley et al., 2019). Appropriate 72 

viscoelastic properties may also enhance tissue regeneration by promoting favorable cellular 73 

activities (Patiño Vargas et al., 2022), which may reduce scar thickness and ensure the 74 

restoration of tissue function. Pathological changes, such as cancer progression, fibrosis, and 75 

tissue degeneration are also closely related to viscoelasticity. Tumor cells can sense tissue 76 

stiffness and viscoelasticity, which may affect their biochemical signaling pathways and 77 
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proliferation (Fan et al., 2024). Furthermore, viscosity may affect the epigenetics of cancer 78 

cells to form mechanical memory (Li et al., 2024), which impacts the development of cancer 79 

(Bera et al., 2022). Fibrosis is associated with alterations in viscoelastic properties. Monitoring 80 

viscoelasticity changes may aid in the early diagnosis of fibrosis before significant tissue 81 

stiffening occurs (Long et al., 2021; Reiter et al., 2021). Brain episodic memory performance 82 

is related to hippocampal viscoelasticity, and it can serve as a biomarker corresponding to 83 

cognitive decline due to aging or brain diseases (Hiscox et al., 2021). In the field of tissue 84 

engineering, viscoelastic properties are critical for designing scaffolds that can mimic the 85 

mechanical behavior of native tissues (Foroughi et al., 2023). Therefore, it is significant to 86 

elucidate the mechanical, chemical, and biological mechanisms underlying the viscoelastic 87 

effects of tissues, which affect their deformation, development, adaptation, and structural 88 

integrity under different physiological and pathological conditions. Recent studies also suggest 89 

that understanding viscoelastic effects may help develop novel diagnostic and therapeutic 90 

strategies (Chang et al., 2023; Wu et al., 2022).  91 

 92 

Fig. 1. Viscoelasticity of soft biological tissues. (a) Stress relaxation curves of tissues and collagen gels, 93 
which demonstrate significant viscoelastic properties, adapted from (Chaudhuri et al., 2020). (b) 94 
Viscoelasticity of two brain tumors, with different moduli and phase angles of viscosity; adapted from 95 
(Streitberger et al., 2020). The two tumors have different growth rates and invasion capabilities.  96 

Much experimental effort has been directed toward exploring the viscoelastic properties 97 

effects and mechanisms of tissues. Such experimental techniques as rheometer, atomic force 98 

microscopy (AFM), and magnetic resonance elastography (MRE) have been employed to 99 

quantify the viscoelastic properties of various tissues (Huang et al., 2019; Zhang et al., 2021). 100 
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The rheometer determines the viscoelastic properties by applying oscillatory shear stresses to 101 

a tissue and measuring the resultant strains under different loading conditions (Hobson et al., 102 

2021). AFM offers high-resolution mapping of static or dynamic mechanical properties at the 103 

cellular and subcellular levels, enabling the study of local variations within tissues (Rebelo et 104 

al., 2013; Rother et al., 2014). MRE provides a non-invasive method to assess the mechanical 105 

properties of tissues in vitro and in vivo. This capability allows for monitoring changes in 106 

viscoelastic properties induced by disease progression or treatment, such as liver fibrosis, brain 107 

tumors, and cardiovascular diseases (Reiter et al., 2021; Zhang et al., 2021). These 108 

investigations are valuable for understanding the mechanical behavior of tissues under different 109 

physiological and pathological conditions. Studies using these techniques have revealed that 110 

viscoelasticity can regulate spatiotemporal tissue organization, driving tissue growth dynamics 111 

and symmetry-breaking instabilities like buckling, folding, and fingering (Mao and Wickström, 112 

2024). In vitro experiments have shown that tumors grow more rapidly in the viscoelastic 113 

environment compared to their elastic counterpart, with viscoelasticity leading to early 114 

branching or morphological instability (Elosegui-Artola et al., 2022). Different types of brain 115 

tumors exhibit significantly different viscoelastic properties (Fig. 1b), leading to their different 116 

growth rates and invasive behaviors. Consequently, targeting the viscoelastic properties of the 117 

tumor microenvironment could be a novel approach to inhibit tumor growth and metastasis 118 

(Streitberger et al., 2020). These experimental findings provide a foundation for theoretical 119 

modeling to capture the complex interplay among viscoelasticity, tissue growth, and 120 

morphological evolution.  121 

The biomechanical mass stress relation proposed in the 1990s (Fung, 1990) states that 122 

growth and remodeling mechanics should account for the changes in the stress-free 123 

configuration due to mass changes. It provides a framework for modeling the growth and 124 

remodeling of living tissues. On this basis, quite a few hyperelastic theoretical models have 125 

been developed to describe the growth of tissues. Usually, these models introduce a set of 126 

kinematic and kinetic equations to capture the complex interactions between mechanical forces 127 

and biological processes (Goriely, 2017; Sun et al., 2022). The hyperelastic continuum model 128 

provides a valuable framework for understanding the elastic behavior of tissues and their 129 

responses to mechanical forces. Residual stresses, arising from differential and incompatible 130 

growth and deformation, play a pivotal role in the growth and various morphogenetic processes, 131 

such as tissue folding and branching (Ambrosi et al., 2019; Xu et al., 2022). The porous matrix 132 

biomechanical model, which treats the tissue as a composite material consisting of a solid 133 
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matrix and a fluid-filled pore space, has also been employed to study growth-induced solid 134 

stresses within tissues (Xue et al., 2018; Xue et al., 2016). The coupling effects between the 135 

solid and fluid phases are important for the growth and morphological evolution of tissues 136 

under different physiological and pathological conditions. The incremental hyperelastic 137 

constitutive method, incorporating constraint conditions such as incompressibility and 138 

interfacial continuity, has been used in the analysis of growth-induced instabilities (Ben Amar 139 

and Goriely, 2005; Huang et al., 2024; Wang et al., 2023). It characterizes how tissues respond 140 

to incremental changes in volumetric growth and mechanical loading, providing a more 141 

nuanced understanding of the conditions that lead to instability and subsequent development 142 

of complex tissue patterns. These previous significant works mainly concentrate on the elastic 143 

components or mechanical interactions, and they have not examined the time-dependent 144 

viscoelastic behaviors of tissues. Recently, a finite hyper-viscoelastic model has been 145 

developed to capture the nonlinear viscous effects of soft tissues under complex loading (Panda 146 

and Buist, 2018). The Prony-series viscoelastic model is employed to capture the complex 147 

viscoelastic behaviors of different brain regions (Morrison et al., 2023). The Saffman-Taylor 148 

instability model has been applied to explain why brain tumors with higher viscosity are more 149 

aggressive and infiltrative (Streitberger et al., 2020). The buckling instability of epithelial 150 

tissues is a key issue in developmental biology. A multiscale biomechanical study elucidated 151 

that viscoelasticity contributes significantly to both the buckling mode and the postbuckling 152 

phase transition of an epithelial monolayer (Wang et al., 2024). These viscoelastic models help 153 

understand how tissues gradually respond to mechanical stimuli over time and the long-term 154 

viscoelastic behavior of tissues. However, viscoelastic models should be combined with 155 

growth laws to fully capture the interplay between time-dependent mechanical stimuli, tissue 156 

growth, and buckling instability processes. 157 

In this paper, by considering the mechano-chemo-biological mechanisms involved in the 158 

development of soft tissues, we present a mechanobiological viscoelastic model to investigate 159 

the viscoelastic effects on their growth, instability, and morphological evolution. This paper is 160 

organized as follows. In Section 2, we present the mechano-chemo-biological mechanisms of 161 

tissue viscoelasticity, and then formulate a mechanobiological growth model with viscoelastic 162 

and nutrition concertation effects. In Section 3, through the spherical shell–core model for a 163 

tumor spheroid, we examine the impact of viscoelasticity on the residual stress accumulation 164 

and growth rate. Section 4 analyzes the influences of viscoelasticity on the instability and 165 

morphological evolution of the spherical organoid with differential growth. This is 166 
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accomplished through the finite element method by implementing the proposed constitutive 167 

model. Finally, the main conclusions drawn from this study are summarized in Section 5.  168 

2. Mechanobiological model 169 

2.1. Mechano-chemo-biological mechanisms of tissue viscoelasticity 170 

Both elastic and viscous properties are significant for soft tissues to withstand and adapt to 171 

their dynamic biomechanical environments. The viscoelasticity of tissues has been studied in 172 

many experiments (Fig. 2a), which results from complicated mechano-chemo-biological 173 

mechanisms (Fig. 2b). Viscoelasticity can change with growth and development under 174 

pathological and physiological conditions (Cox, 2021; Huang et al., 2019). For instance, a 175 

compact arrangement of cells exhibits more solid-like properties, whereas a dispersed 176 

arrangement displays more fluid-like behavior (Mao and Wickström, 2024). The fluid-to-solid 177 

transformation may play an important role in embryonic development (Mongera et al., 2018). 178 

Due to cell differentiation, proliferation, and carcinogenesis, tissues may contain various types 179 

of cells with different structural and mechanical properties in order to achieve their biological 180 

functions (Hang et al., 2022). The extracellular matrix (ECM) provides mechanical, chemical, 181 

and structural support to tissues. The density and orientation of ECM fibrils, such as collagen 182 

and elastin, play a significant role in the variation of tissue viscoelastic properties (Chaudhuri 183 

et al., 2020; Lyu et al., 2023). In addition, the interactions of cell–ECM and cell–cell, mediated 184 

by integrins, cadherins and other adhesion molecules, are vital for maintaining the integrity and 185 

distributing the mechanical stresses in the tissue. (Mao and Wickström, 2024). At the 186 

subcellular scale, the evolution of the cytoskeleton (Pegoraro et al., 2017) and cell cortex (Yin 187 

et al., 2022) may significantly influence the viscoelastic properties of cells and thereby 188 

determine how tissues respond to external stimuli. Therefore, the types and arrangements of 189 

cells within the tissue, ECM properties, cell interactions and actin cytoskeleton evolution 190 

collectively determine the macroscale viscoelastic property of a tissue (Fig. 2b). In Appendix 191 

B, we try to clarify how these multiscale mechanisms modulate the viscoelastic parameters.  192 

To accurately characterize the viscoelastic behavior of soft tissues, it is crucial to utilize a 193 

theoretical model that can encapsulate these multifaceted interactions. Some simple 194 

viscoelastic models consisting of springs and dashpots have been used to describe the 195 

viscoelastic properties of tissues (Elosegui-Artola et al., 2022; Mongera et al., 2023). In this 196 

study, the specific viscoelastic properties are tentatively modeled by a three-parameter 197 
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viscoelastic model (Fig. 2c), which is a combination of spring and dashpot elements (Lin and 198 

Wei, 2020). This model serves as a bridge, linking the mechano-chemo-biological properties 199 

at the cellular and molecular levels to the observable macroscopic viscoelastic behavior of the 200 

tissue. The variations in the relaxation modulus and relaxation time are correlated with these 201 

multiscale mechanisms and their changes. These variations further affect the values of the 202 

viscoelastic moduli, which can be formulated, for example, as 𝐺𝐺(𝑡𝑡) = 𝐺𝐺∞ + 𝐺𝐺1exp (−𝑡𝑡 G1 ξ⁄ ). 203 

This function will be employed to distinguish the specific types of tissues and to characterize 204 

the temporal evolution of their viscoelastic behavior. Furthermore, this viscoelastic model will 205 

be integrated into the tissue growth law in the following section. 206 

 207 

Fig. 2. Mechanisms and modeling of viscoelastic properties of soft tissues. (a) Viscoelastic behavior of 208 
tissues tested by many experimental techniques. (b) Cellular and molecular mechanisms underlying the 209 
elastic and viscoelastic behaviors of a tissue. (c) A three-parameter viscoelastic model is here taken as an 210 
example to characterize the viscoelasticity of different tissues and changes in viscoelasticity, through the 211 
different viscoelastic moduli and relaxation times.  212 

2.2. Mechanobiological growth model with viscoelastic effects 213 

Consider a body in the three-dimensional Euclidean space 𝔼𝔼3, as shown in Fig. 3, where 214 

Ω0 is the initial (reference) configuration (at time 𝑡𝑡0), and Ω is the current configuration (at 215 

time 𝑡𝑡). 𝑿𝑿 and 𝒙𝒙 denote the positions of a material point in the two configurations, respectively. 216 
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For a tissue with differential volume growth and large deformation, we adopt the 217 

decomposition of the deformation gradient tensor 𝐅𝐅 (Rodriguez et al., 1994; Zhou et al., 2018). 218 

It is expressed as  219 

𝐅𝐅 = 𝐅𝐅𝑎𝑎 ⋅ 𝐅𝐅𝑔𝑔 , (1) 220 

where 𝐅𝐅𝑎𝑎  denotes the mechanical deformation tensor with the viscoelastic effect, and 𝐅𝐅𝑔𝑔 221 

denotes the growth tensor. A stress-free intermediate configuration Ω𝑣𝑣 is also defined, which 222 

is often incompatible in the case of differential growth, as illustrated in Fig. 3. Due to the 223 

viscoelastic effect, i.e., stress relaxation and creep, the deformation tensor evolves, leading to 224 

the evolution of both the intermediate and current configurations. The synergistic effects of 225 

elastic and viscoelastic deformation and volumetric growth may greatly influence the 226 

morphological instability and evolutions of tissues under various physiological and 227 

pathological conditions, as we will show below. 228 

 229 

Fig. 3. Schematic diagram of multiplicative decomposition. The growth tensor 𝐅𝐅𝑔𝑔 at time 𝑡𝑡1 leads to the 230 

current configuration Ω(𝑡𝑡1), and the corresponding deformation gradient is decomposed into 𝐅𝐅𝑎𝑎(𝑡𝑡1) and 𝐅𝐅𝑔𝑔. 231 

The situation is similar for at time 𝑡𝑡2 . A material point with the coordinate vector 𝑿𝑿  in the initial 232 

configuration is mapped to 𝒙𝒙 in the current configuration by 𝜒𝜒(𝑿𝑿, 𝑡𝑡). The viscoelasticity leads to time-233 
dependent deformation, which evolves with time.  234 

2.2.1. Mass balance equation 235 

In general, tissue growth can occur through coupled volumetric growth and material flux 236 

across its boundary 𝜕𝜕Ω. Let the volumetric growth function 𝜌𝜌𝛾𝛾𝑔𝑔 denote the mass increase due 237 

to cell proliferation or ECM synthesis per unit volume in the current configuration, where 238 

𝛾𝛾𝑔𝑔(𝒙𝒙) is the growth rate function and ρ=dm ⁄dV is the mass density. The flux of material 239 

through the boundary corresponds to the vector 𝐑𝐑𝑓𝑓. Thus, the mass balance is 240 
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d
d𝑡𝑡
� (d𝑚𝑚)
Ω

=
d
d𝑡𝑡
� (𝜌𝜌d𝑉𝑉)
Ω

= �𝜌𝜌𝛾𝛾𝑔𝑔d𝑉𝑉
Ω

+ � 𝐑𝐑𝒇𝒇 ⋅ 𝐧𝐧d𝑆𝑆
∂Ω

. (2) 241 

The volume rate is proportional to the divergence of the velocity field, that is, 242 

d
d𝑡𝑡

(d𝑉𝑉) = div 𝐯𝐯 d𝑉𝑉, (3) 243 

where 𝐯𝐯 denotes the velocity vector. By applying the divergence theorem, the mass balance 244 

equation for a growing continuum can be obtained from Eq. (2) as 245 

𝜌̇𝜌 + 𝜌𝜌 div 𝐯𝐯 = 𝜌𝜌𝛾𝛾𝑔𝑔 + div𝐑𝐑𝑓𝑓, (4) 246 

where the dot above the variable stands for the material time derivative. In the case of slow 247 

growth, the flux through the boundary can be neglected (Ben Amar and Goriely, 2005; Goriely, 248 

2017), we have 249 

𝜌̇𝜌 + 𝜌𝜌 div 𝐯𝐯 = 𝜌𝜌𝛾𝛾𝑔𝑔. (5) 250 

Let 𝜌𝜌0  and 𝜌𝜌𝑔𝑔  denote the densities in the initial state and the virtual stress-free state, 251 

respectively. The mass growth can also be written as  252 

d
d𝑡𝑡
� �𝜌𝜌𝑔𝑔d𝑉𝑉𝑔𝑔�
Ω

= �𝜌𝜌𝑔𝑔𝛾𝛾𝑔𝑔d𝑉𝑉𝑔𝑔
Ω

, (6) 253 

where ρg= dmg dVg⁄ = dm dVg⁄ , 𝐽𝐽𝑔𝑔 = det�𝐅𝐅𝑔𝑔� , d𝑉𝑉𝑔𝑔 = 𝐽𝐽𝑔𝑔d𝑉𝑉0  and 𝐽𝐽 = 𝐽𝐽𝑎𝑎𝐽𝐽𝑔𝑔 = det(𝐅𝐅𝑎𝑎)det�𝐅𝐅𝑔𝑔� 254 

are the measurement of the volume change. d𝑉𝑉0 denotes the initial volume element. When the 255 

same mass density is assumed for the new tissue generated by growth and the original one, that 256 

is, the constant density growth 𝜌𝜌0 = 𝜌𝜌𝑔𝑔, we obtain  257 

𝛾𝛾𝑔𝑔 = 𝐽𝐽𝑔𝑔−1𝐽𝐽𝑔̇𝑔 = tr�𝐅𝐅𝑔𝑔−1 ⋅ 𝐅̇𝐅𝑔𝑔�, (7) 258 

where 𝐽𝐽𝑔̇𝑔 = 𝐽𝐽𝑔𝑔tr�𝐅𝐅𝑔𝑔−1 ⋅ 𝐅̇𝐅𝑔𝑔� is the Jacobi’s formula.  259 

2.2.2. Momentum balance equation 260 

We assume that the newly added material due to tissue growth has the same properties as 261 

the original one. Thus, the linear momentum balance of the growing tissue can be expressed as 262 

d
d𝑡𝑡
� 𝜌𝜌𝐯𝐯d𝑉𝑉
Ω

= � 𝐭𝐭d𝑆𝑆
∂Ω

+ �𝜌𝜌𝐟𝐟d𝑉𝑉
Ω

+ �𝜌𝜌𝛾𝛾𝑔𝑔𝐯𝐯d𝑉𝑉
Ω

, (8) 263 

where 𝐭𝐭 and 𝐟𝐟 denote the surface traction and the body force, respectively. The surface traction 264 

vector is related to the Cauchy stress, 𝐭𝐭 = 𝜎𝜎 ⋅ 𝐧𝐧, where 𝐧𝐧 is the unit outward normal to the 265 
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surface. Using the divergence theorem and Eq. (5), the differential form of Eq. (8) gives, that 266 

is, the balance of linear momentum (Rahman et al., 2017) 267 

𝜌𝜌𝐯̇𝐯 = div(𝜎𝜎T) + 𝜌𝜌𝐟𝐟. (9) 268 

Furthermore, the acceleration can be ignored for slow growth. In the absence of the body 269 

force, then Eq. (9) becomes 270 

div(𝜎𝜎) = 0. (10) 271 

The balance between the angular momentum and the applied torques for a growing continuum 272 

can be expressed as 273 

d
d𝑡𝑡
�𝜌𝜌𝐱𝐱 × 𝐯𝐯d𝑉𝑉
Ω

= � 𝐱𝐱 × 𝐭𝐭d𝑆𝑆
∂Ω

+ �𝜌𝜌𝐱𝐱 × 𝐟𝐟d𝑉𝑉
Ω

+ �𝜌𝜌𝛾𝛾𝑔𝑔𝐱𝐱 × 𝐯𝐯d𝑉𝑉
Ω

. (11) 274 

The transport and localization procedure lead to the symmetric condition for the Cauchy stress 275 

tensor 𝜎𝜎 = 𝜎𝜎T. 276 

2.2.3. Energy and entropy equation 277 

The kinetic energy equation for an isothermal growth at a physiological temperature can be 278 

expressed as (Ciarletta et al., 2012) 279 

d
d𝑡𝑡
�𝐾𝐾d𝑉𝑉
Ω

= 𝑃𝑃𝑖𝑖 + 𝑃𝑃𝑒𝑒 , (12) 280 

where 𝐾𝐾 is the kinetic energy per unit volume, 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑒𝑒 denote the internal and external rates 281 

of mechanical work, respectively. Thus, they read  282 

𝑃𝑃𝑖𝑖 = −�𝜎𝜎:𝐃𝐃d𝑉𝑉
Ω

, (13) 283 

𝑃𝑃𝑒𝑒 = −�𝜌𝜌𝐟𝐟 ⋅ 𝐯𝐯d𝑉𝑉
Ω

+ � 𝐭𝐭 ⋅ 𝐯𝐯d𝑆𝑆
∂Ω

+
1
2
�𝜌𝜌𝛾𝛾𝑔𝑔𝐯𝐯 ⋅ 𝐯𝐯d𝑉𝑉
Ω

, (14) 284 

where 𝐃𝐃 = 1 2⁄ �𝐅̇𝐅 ⋅ 𝐅𝐅−1 + �𝐅̇𝐅 ⋅ 𝐅𝐅−1�T� is the deformation rate. 285 

Then, the first law of thermodynamics is applied to a growing continuum as the 286 

conversation of energy principle, that is,  287 

d
d𝑡𝑡
� (𝜌𝜌𝜌𝜌 + 𝐾𝐾)d𝑉𝑉
Ω

= 𝑃𝑃𝑒𝑒 + �𝜌𝜌𝛾𝛾𝑔𝑔𝑒𝑒d𝑉𝑉
Ω

+ �𝐛𝐛𝑔𝑔:𝐋𝐋𝑔𝑔d𝑉𝑉
Ω

+ 𝑄𝑄, (15) 288 
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where 𝑒𝑒 is the internal energy per unit current mass, 𝐋𝐋𝑔𝑔 = 𝐅̇𝐅𝑔𝑔 ⋅ 𝐅𝐅𝑔𝑔−1 denotes the growth rate 289 

tensor. 𝐛𝐛𝑔𝑔  denotes the homeostatic stress, which represents the biochemical and cellular 290 

activity involved in the growth process (Buskohl et al., 2014), and it work-conjugate to the 291 

growth rate tensor (DiCarlo and Quiligotti, 2002). 𝑄𝑄 represents the total heat input rate, which 292 

is given as 293 

𝑄𝑄 = �𝜌𝜌𝜌𝜌d𝑉𝑉
Ω

− � 𝐪𝐪 ⋅ 𝐧𝐧d𝑆𝑆
∂Ω

, (16) 294 

where 𝜔𝜔 is the heat input rate per unit current mass, 𝐪𝐪 is the heat flux across the surface element. 295 

Therefore, the energy balance equation reads  296 

𝜌𝜌𝑒̇𝑒 = 𝜎𝜎:𝐃𝐃 + 𝐛𝐛𝑔𝑔:𝐋𝐋𝑔𝑔 + 𝜌𝜌𝜌𝜌 − div(𝐪𝐪). (17) 297 

Entropy measures the disorder induced by microscopic fluctuations. For a growing 298 

continuum, the integral form of the entropy equation can be expressed as 299 

d
d𝑡𝑡
�𝜌𝜌𝜌𝜌d𝑉𝑉
Ω

= �𝜌𝜌𝛾𝛾𝑔𝑔𝑠𝑠d𝑉𝑉
Ω

+ �𝜌𝜌𝜌𝜌d𝑉𝑉
Ω

+ +�
𝜌𝜌𝜌𝜌
𝑇𝑇

d𝑉𝑉
Ω

− �
1
𝑇𝑇
𝐪𝐪 ⋅ 𝐧𝐧d𝑆𝑆

∂Ω
, (18) 300 

where 𝑠𝑠  and 𝜂𝜂  denote the entropy and the entropy production rate per unit current mass, 301 

respectively, 𝑇𝑇 is the absolute temperature. Applying the divergence theorem and the transport 302 

equation Eq. (S5), it has  303 

𝜌𝜌𝑠̇𝑠 =
𝜌𝜌𝜌𝜌
𝑇𝑇
− div

𝐪𝐪
𝑇𝑇

+ 𝜌𝜌𝜌𝜌. (19) 304 

The second law of thermodynamics states that the internal entropy change rate of a system 305 

should not be smaller than the flow of entropy transferred to that system, that is 𝜂𝜂 ≥ 0 . 306 

Therefore, from Eq. (19), the Clausius–Duhem inequality requires that  307 

𝜌𝜌𝑠̇𝑠 ≥
𝜌𝜌𝜌𝜌
𝑇𝑇
− div

𝐪𝐪
𝑇𝑇

. (20) 308 

The relation between the specific internal energy 𝑒𝑒  and the specific free energy 𝜓𝜓  can be 309 

obtained from the Legendre transformation, 310 

𝜓𝜓 = 𝑒𝑒 − 𝑇𝑇𝑇𝑇. (21) 311 

Combining Eqs. (17), (20) and (21), we obtain the inequality 312 

𝜌𝜌𝜓̇𝜓 ≤ 𝜎𝜎:𝐃𝐃 + 𝐛𝐛𝑔𝑔:𝐋𝐋𝑔𝑔 − 𝜌𝜌𝜌𝜌𝑇̇𝑇 −
1
𝑇𝑇
𝐪𝐪 ⋅ grad(𝑇𝑇). (22) 313 
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2.2.4. Viscoelastic constitutive relation of growing tissues 314 

Assume that the deformation gradient 𝐹𝐹𝑖𝑖𝑖𝑖(𝑡𝑡) and temperature 𝑇𝑇(𝑡𝑡) are continuous in the 315 

interval 0 < 𝑡𝑡 < ∞, that is, it follows from the Stone-Weierstrass theorem. Referring to the 316 

polynomial expansion of the free energy in terms of Stieltjes integrals (Christensen and Naghdi, 317 

1967), 𝜌𝜌𝜌𝜌 can be simplified as  318 

𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜓𝜓0 + � 𝐀𝐀(𝑡𝑡 − 𝜁𝜁):
𝜕𝜕𝐅𝐅𝑎𝑎
𝜕𝜕𝜕𝜕

d𝜁𝜁
𝑡𝑡

−∞
− � 𝛽𝛽(𝑡𝑡 − 𝜁𝜁)

𝜕𝜕𝑇𝑇𝑑𝑑
𝜕𝜕𝜕𝜕

d𝜁𝜁
𝑡𝑡

−∞

+𝑊𝑊𝑐𝑐(𝐅𝐅𝑎𝑎, 𝑡𝑡) −� � 𝜅𝜅(𝑡𝑡 − 𝜁𝜁1, 𝑡𝑡 − 𝜁𝜁2)
𝜕𝜕𝑇𝑇𝑑𝑑
𝜕𝜕𝜁𝜁1

𝜕𝜕𝑇𝑇𝑑𝑑
𝜕𝜕𝜁𝜁2

d𝜁𝜁1
𝑡𝑡

−∞
d𝜁𝜁2

𝑡𝑡

−∞
+ ⋯ , (23)

 319 

where 𝜓𝜓0  is the mean free energy, 𝑇𝑇𝑑𝑑(𝑡𝑡)  is the temperature difference from the base 320 

temperature 𝑇𝑇0, and 𝑇𝑇 = 𝑇𝑇0 + 𝑇𝑇𝑑𝑑. 𝑊𝑊𝑐𝑐 denotes the deformation energy of per unit volume in the 321 

current configuration, and its incompressible viscoelastic expression is assumed as 𝑊𝑊𝑐𝑐 =322 

1
2 ∫ 𝐺𝐺(𝑡𝑡 − 𝜁𝜁) ⋅ {d[tr(𝐅𝐅𝑎𝑎 ⋅ 𝐅𝐅𝑎𝑎T) − 3]  d𝜁𝜁⁄ }d𝜁𝜁𝑡𝑡

−∞  , where 𝐺𝐺(𝑡𝑡)  is the relaxation function. 𝜅𝜅(𝑡𝑡)  is 323 

another appropriate relaxation function form of the mechanical property. In the expansion, the 324 

coupling of viscoelastic deformation and temperature is ignored. The integration functions are 325 

continuous for 𝑡𝑡 > 0 and are assumed to vanish identically for 𝑡𝑡 ≤ 0. Substituting Eq. (23) 326 

into (22) and doing the indicated differentiation with respect to 𝑡𝑡, one obtains  327 

�−𝐀𝐀0 −
𝜕𝜕𝑊𝑊𝑐𝑐

𝜕𝜕𝐅𝐅𝑎𝑎
+ 𝜎𝜎 ⋅ 𝐅𝐅𝑎𝑎−T� ⋅ 𝐅̇𝐅𝑎𝑎 + �𝐅𝐅𝑎𝑎T ⋅ 𝜎𝜎 ⋅ 𝐅𝐅𝑎𝑎−T ⋅ 𝐅𝐅𝑔𝑔−T + 𝐛𝐛𝑔𝑔 ⋅ 𝐅𝐅𝑔𝑔−T�: 𝐅̇𝐅𝑔𝑔

+ �𝛽𝛽0 + � 𝜅𝜅(𝑡𝑡 − 𝜁𝜁, 0)
𝜕𝜕𝑇𝑇𝑑𝑑
𝜕𝜕𝜕𝜕

d𝜁𝜁
𝑡𝑡

−∞
− 𝜌𝜌𝜌𝜌� 𝑇̇𝑇

+ �−�
𝜕𝜕
𝜕𝜕𝜕𝜕
𝐀𝐀(𝑡𝑡 − 𝜁𝜁):

𝜕𝜕𝐅𝐅𝑎𝑎
𝜕𝜕𝜕𝜕

d𝜁𝜁
𝑡𝑡

−∞
+ �

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛽𝛽(𝑡𝑡 − 𝜁𝜁)

𝜕𝜕𝑇𝑇𝑑𝑑
𝜕𝜕𝜕𝜕

d𝜁𝜁
𝑡𝑡

−∞
+ 𝜌𝜌𝑑̇𝑑 + −

1
𝑇𝑇
𝐪𝐪 ⋅ grad(𝑇𝑇)� ≥ 0. (24)

 328 

In the derivation, the symmetry of the stress and deformation gradient tensor is used. 𝐀𝐀0 =329 

𝐀𝐀|𝑡𝑡=0 is the initial stress and it should be zero in this study. 𝛽𝛽0 = 𝛽𝛽|𝑡𝑡=0 is the initial entropy. 𝑑̇𝑑 330 

denotes the rate of energy dissipation. Let 𝑊𝑊 as the deformation energy of per unit volume in 331 

the virtual configuration, so 𝑊𝑊 = 𝐽𝐽𝑎𝑎𝑊𝑊𝑐𝑐. This inequality should be valid for any 𝐅̇𝐅𝑎𝑎 and 𝑇̇𝑇, that 332 

is,  333 

𝜎𝜎 = 𝐽𝐽𝑎𝑎−1
𝜕𝜕𝜕𝜕
𝜕𝜕𝐅𝐅𝑎𝑎

⋅ 𝐅𝐅𝑎𝑎T, (25) 334 

𝜌𝜌𝜌𝜌 = 𝛽𝛽0 + 𝜅𝜅 ∗ d𝑇𝑇𝑑𝑑, (26) 335 
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where ∗ denotes the Stieltjes convolution symbol, ∫ 𝜙𝜙 d𝜑𝜑
d𝜁𝜁

d𝜁𝜁 = 𝜙𝜙 ∗ d𝜑𝜑𝑡𝑡
−∞ . Also, the following 336 

inequality can be obtained 337 

�𝐅𝐅𝑎𝑎T ⋅ 𝜎𝜎 ⋅ 𝐅𝐅𝑎𝑎−T ⋅ 𝐅𝐅𝑔𝑔−T + 𝐛𝐛𝑔𝑔 ⋅ 𝐅𝐅𝑔𝑔−T�: 𝐅̇𝐅𝑔𝑔 = �𝐅𝐅𝑎𝑎T ⋅ 𝜎𝜎 ⋅ 𝐅𝐅𝑎𝑎−T + 𝐛𝐛𝑔𝑔�:𝐋𝐋𝑔𝑔 ≥ 0. (27) 338 

The fourth term of Eq. (24)  can result in the dissipation inequality as in the 339 

thermoviscoelasticity (Christensen and Naghdi, 1967) and it will not be repeated here.  340 

For illustration, we assume that 𝐋𝐋𝑔𝑔 has the form 341 

𝐋𝐋𝑔𝑔 = �𝑓𝑓𝑖𝑖(𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖0)
𝑖𝑖

�𝐅𝐅𝑎𝑎T ⋅ 𝜎𝜎 ⋅ 𝐅𝐅𝑎𝑎−T + 𝐛𝐛𝑔𝑔�. (28) 342 

One possible growth model can be obtained, which is a stress-related and nutrient-limited 343 

growth model, that is, the local nutrient concentration and residual stresses determine the tissue 344 

growth rate. where 𝑐𝑐𝑖𝑖 is the concentration of the constituent 𝑖𝑖, 𝑓𝑓𝑖𝑖(𝑐𝑐𝑖𝑖) denotes a positive-definite 345 

scalar function describing the chemical kinetics, and 𝑐𝑐𝑖𝑖0 is the nutrient threshold, below which 346 

the tissue reduced in size or dies due to lack of nutrient availability. (𝜎𝜎 + 𝐛𝐛𝑔𝑔) drives the tissue 347 

growth and it acts as the biomechanical driving force. 348 

The inequality of Eq. (27) can be satisfied by Eq. (28). Thus Eq. (28) can be written as 349 

𝐅̇𝐅𝑔𝑔 ⋅ 𝐅𝐅𝑔𝑔−1 = �𝑓𝑓𝑖𝑖(𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖0)
𝑖𝑖

�𝐅𝐅𝑎𝑎T ⋅ 𝜎𝜎 ⋅ 𝐅𝐅𝑎𝑎−T + 𝐛𝐛𝑔𝑔�, (29) 350 

which is the growth evolution law. Notably, the growth governing equations are similar to the 351 

elastic equations (Xue et al., 2016; Yin et al., 2019), but the stress distribution is related to the 352 

viscoelastic properties of tissues.  353 

2.3. Theoretical solution 354 

Many biological tissues have approximately spherical shapes, e.g., tumors and organoids, 355 

thus, the spherical model is often used for biological studies (Goriely, 2017). Additionally, the 356 

cells at the core may receive less oxygen and nutrients as the sphere grows larger, which leads 357 

to the slowed or arrested growth of the core (Walker et al., 2023a). The differential growth rate 358 

can also reflect important biological processes. Differential growth rates between the surface 359 

and core of spherical structures can lead to important morphogenetic events during tissue 360 

development (Eskandari and Kuhl, 2015). In this study, the symmetric growth, deformation, 361 

and instability of a spherical shell–core structure are considered as an example to illustrate the 362 

prominent features of viscoelastic effects. The shell has inner and outer radii 𝑅𝑅𝑖𝑖 ,𝑅𝑅𝑜𝑜 in the initial 363 
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configuration and grows into a sphere shell with inner and outer radii 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑜𝑜  in the current 364 

configuration, as shown in Fig. 4. The interface between the core and the shell is perfectly 365 

bonded. The spherical coordinates in the current configuration are (𝑟𝑟,𝜃𝜃,𝜑𝜑), and the normal 366 

bases are �𝐞𝐞𝑟𝑟 , 𝐞𝐞𝜃𝜃 , 𝐞𝐞𝜑𝜑�. The corresponding coordinates in the initial configuration are (𝑅𝑅,𝛩𝛩,𝛷𝛷). 367 

Thus, the deformation gradient tensor is 368 

𝐅𝐅 = diag �
∂𝑟𝑟
∂𝑅𝑅

,  
𝑟𝑟
𝑅𝑅

,  
𝑟𝑟
𝑅𝑅�

. (30) 369 

Assuming that in the initial stage of growth, the deformation preserves the spherical symmetry, 370 

that is, 371 

𝐅𝐅𝑔𝑔 = diag(𝑔𝑔𝑟𝑟 ,𝑔𝑔𝜃𝜃 ,𝑔𝑔𝜃𝜃), (31) 372 

where the condition 𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 corresponds to the isotropic growth, which means the dilation of 373 

original sphere. The mechanical deformation part of the deformation gradient is written as, 374 

𝐅𝐅𝑎𝑎 = diag(𝛼𝛼𝑟𝑟,𝛼𝛼𝜃𝜃,𝛼𝛼𝜃𝜃). (32) 375 

 376 

Fig. 4. The spherical shell–core model for a cellular spheroid with differential growth. The shell has the 377 
inner and outer radii 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑜𝑜 in the initial configuration, and it grows to a spherical shell 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑜𝑜 in the 378 

current configuration, respectively. If the core is non-growing, it has 𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑖𝑖. The spherical coordinates 379 
(𝑅𝑅,𝛩𝛩,𝛷𝛷) and (𝑟𝑟,𝜃𝜃,𝜑𝜑) are used. 380 

From Eq. (1) , one has 𝛼𝛼𝑟𝑟 = (∂𝑟𝑟/ ∂𝑅𝑅)/𝑔𝑔𝑟𝑟  and 𝛼𝛼𝜃𝜃 = (𝑟𝑟/𝑅𝑅)/𝑔𝑔𝜃𝜃 . The approximation of 381 

volume incompressibility requires that 𝐽𝐽𝑎𝑎 = 1 and 𝛼𝛼𝑟𝑟 = 𝛼𝛼𝜃𝜃−2. Then, the component of 𝐅𝐅 can be 382 

obtained as  383 

∂𝑟𝑟
∂𝑅𝑅

=
𝑅𝑅2

𝑟𝑟2
𝑔𝑔𝑟𝑟𝑔𝑔𝜃𝜃2. (33) 384 

By integration, the outer radius is  385 
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𝑟𝑟3 = 𝑟𝑟𝑖𝑖3 + 3� 𝑔𝑔𝑟𝑟
𝑅𝑅

𝑅𝑅𝑖𝑖
𝑔𝑔𝜃𝜃2𝑅𝑅2d𝑅𝑅, (34) 386 

and the deformation gradient component can be given as   387 

𝛼𝛼𝜃𝜃 =
�𝑟𝑟𝑖𝑖3 + 3∫ 𝑔𝑔𝑟𝑟

𝑅𝑅
𝑅𝑅𝑖𝑖

𝑔𝑔𝜃𝜃2𝑅𝑅2d𝑅𝑅�
1
3

𝑔𝑔𝜃𝜃𝑅𝑅
. (35) 388 

Taking a time derivative for Eq. (34)  and changing the integration variable, the radius 389 

evolution equation can be obtained as follows   390 

𝑟𝑟2𝑟̇𝑟 = � 𝑔̇𝑔𝑟𝑟
𝑅𝑅

𝑅𝑅𝑖𝑖
𝑔𝑔𝜃𝜃2𝑅𝑅2d𝑅𝑅 + 2� 𝑔̇𝑔𝜃𝜃

𝑅𝑅

𝑅𝑅𝑖𝑖
𝑔𝑔𝜃𝜃𝑔𝑔𝑟𝑟𝑅𝑅2d𝑅𝑅 = �

1
𝑔𝑔𝑟𝑟

𝑟𝑟

𝑟𝑟𝑖𝑖
𝑔̇𝑔𝑟𝑟𝑟𝑟2d𝑟𝑟 + 2�

1
𝑔𝑔𝜃𝜃

𝑟𝑟

𝑟𝑟𝑖𝑖
𝑔̇𝑔𝜃𝜃𝑟𝑟2d𝑟𝑟. (36) 391 

Using Eq. (29), the growth rates in the spherical coordinate system can be obtained as  392 

𝑔̇𝑔𝑟𝑟 = �𝑓𝑓𝑖𝑖(𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖0)�𝜎𝜎𝑟𝑟 + 𝑏𝑏𝑔𝑔�𝑔𝑔𝑟𝑟
𝑖𝑖

, 393 

𝑔̇𝑔𝜃𝜃 = �𝑓𝑓𝑖𝑖(𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖0)�𝜎𝜎𝜃𝜃 + 𝑏𝑏𝑔𝑔�𝑔𝑔𝜃𝜃
𝑖𝑖

. (37) 394 

To focus on the mechanical cues for tissue growth, we consider a spherical shell perfectly 395 

bonded on the incompressible non-growing core. The case of isotropic and constant growth 396 

(𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 = 𝑔𝑔) is considered (Erlich et al., 2019) as an example. For constant growth, the 397 

growth rate is determined by the overall stress state. In this study, the growth equation is 398 

simplified as   399 

𝑔̇𝑔 = 𝑓𝑓𝑔𝑔(𝑐𝑐 − 𝑐𝑐0)�tr(𝜎𝜎�𝑖𝑖) + 𝑏𝑏𝑔𝑔�𝑔𝑔, (38) 400 

where 𝜎𝜎�𝑖𝑖  denotes the average of the principle stress components along the radial position, 401 

tr(𝜎𝜎�𝑖𝑖) = 𝜎𝜎�𝑟𝑟 + 𝜎𝜎�𝜃𝜃 + 𝜎𝜎�𝜑𝜑. 𝑐𝑐0 denotes the critical nutrition density, and the function 𝑓𝑓𝑔𝑔(𝑐𝑐 − 𝑐𝑐0)  402 

describes the effect of nutrient density.  403 

Because of the symmetry, there are only two non-independent stress components in the 404 

spherical coordinates, that is, [𝜎𝜎] = diag(𝜎𝜎𝑟𝑟 ,𝜎𝜎𝜃𝜃,𝜎𝜎𝜃𝜃). Referring to Eq. (10), the mechanical 405 

equilibrium in the spherical coordinate is written as 406 

∂𝜎𝜎𝑟𝑟
∂𝑟𝑟

+
2
𝑟𝑟

(𝜎𝜎𝑟𝑟 − 𝜎𝜎𝜃𝜃) = 0. (39) 407 
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For the incompressible viscoelastic model, 𝑊𝑊 can be written in a form similar to the neo-408 

Hookean material (Khajehsaeid et al., 2014; Narooei and Arman, 2018)  409 

𝑊𝑊 =
1
2
� 𝐺𝐺
𝑡𝑡

−∞
(𝑡𝑡 − 𝜁𝜁)

d�𝛼𝛼𝑟𝑟2 + 𝛼𝛼𝜃𝜃2 + 𝛼𝛼𝜃𝜃2 − 3�
d𝜁𝜁

d𝜁𝜁 =
1
2
� 𝐺𝐺
𝑡𝑡

−∞
(𝑡𝑡 − 𝜁𝜁)

d(𝛼𝛼−4 + 2𝛼𝛼2 − 3)
d𝜁𝜁

d𝜁𝜁. (40) 410 

where 𝛼𝛼 = 𝛼𝛼𝜃𝜃. The relation can be written in the Stieltjes convolution form, that is   411 

𝑊𝑊 =
1
2
𝐺𝐺 ∗ d(𝛼𝛼−4 + 2𝛼𝛼2 − 3). (41) 412 

where ∗  denotes the Stieltjes convolution symbol. The relaxation function 𝐺𝐺(𝑡𝑡)  can be 413 

approximated by the Prony series as 414 

𝐺𝐺(𝑡𝑡) = 𝐺𝐺∞ + �𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

exp �
−𝑡𝑡
𝜏𝜏𝑖𝑖
� , (42) 415 

where τi= ξi Gi⁄  denotes the relaxation time. If we use a simplified viscoelastic model, as 416 

shown in Fig. 2c, which is the standard three-parameter model with relaxation time τg= ξ G1⁄ , 417 

the relaxation function becomes  418 

𝐺𝐺(𝑡𝑡) = 𝐺𝐺∞ + 𝐺𝐺1exp�
−𝑡𝑡
𝜏𝜏𝑔𝑔
� . (43) 419 

It has the initial modulus 𝐺𝐺0 = 𝐺𝐺∞ + 𝐺𝐺1 at time 𝑡𝑡 = 0. In the case of isotropic growth (𝑔𝑔𝑟𝑟 =420 

𝑔𝑔𝜃𝜃 = 𝑔𝑔) and using the stress-free boundary condition 𝜎𝜎𝑟𝑟(𝑅𝑅𝑜𝑜, 𝑡𝑡) = 0, the stress components can 421 

be obtained from Eq. (39) and (25) as  422 

𝜎𝜎𝑟𝑟 =
1
2
𝐺𝐺 ∗ d(𝛼𝛼−4 + 4𝛼𝛼−1) −

1
2
𝐺𝐺 ∗ d(𝛼𝛼𝑜𝑜−4 + 4𝛼𝛼𝑜𝑜−1),  423 

𝜎𝜎𝜃𝜃 = 𝜎𝜎𝑟𝑟 +
𝑟𝑟
2
∂𝜎𝜎𝑟𝑟
∂𝑟𝑟

= 𝜎𝜎𝑟𝑟 + 𝐺𝐺 ∗ d(𝛼𝛼2 + 𝛼𝛼−4), (44) 424 

where 425 

𝛼𝛼𝑜𝑜 = �1 −
𝑅𝑅𝑖𝑖3

𝑅𝑅𝑜𝑜3
+

1
𝑔𝑔3

𝑅𝑅𝑖𝑖3

𝑅𝑅𝑜𝑜3
�

1
3

. (45) 426 

The theoretical solution for a growing spherical shell–core structure has been obtained, 427 

capturing both its elastic and time-dependent deformation behavior. In the following sections, 428 

this model will be applied to specific case studies, focusing on the impact of viscoelasticity on 429 

tissue growth and morphological evolution.  430 
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3. Growth of a viscoelastic spherical tumor  431 

In growing tumors, the mechanical stress and strain fields, the nutrient and chemical fields, 432 

and the growth rates are strongly coupled. The viscoelastic nature of tumors constitutes a 433 

pivotal biomechanical attribute that significantly influences tumorigenesis, progression, and 434 

metastatic potential (Streitberger et al., 2020; Walker et al., 2023b). Although solid tumors 435 

usually evolve irregular shapes as they grow, their initial shapes can be approximated to be 436 

spherical. A central necrosis may form in a solid tumor due to the diminished supply of oxygen 437 

and nutrients in the core region. As an illustrative case, therefore, the effects of viscoelasticity 438 

on tumor growth will be elucidated by using the spherical shell–core model in this section. This 439 

model is based on the simplified assumption that the core is incompressible and non-growing, 440 

while the outer surface is free to focus on viscoelastic effects. 441 

3.1. Stress field induced by growth 442 

 443 

Fig. 5. The stress evolution in a growing spherical shell–core tumor, with geometry Ri Ro⁄ = 0.5 and an 444 
incompressible non-growing core, that is, the inner surface is fixed and the outer surface is free. A larger 445 
G0 G∞⁄  indicates more obvious viscoelasticity and stress relaxation, and the difference G0 − 𝐺𝐺∞ denotes the 446 

modulus that can be relaxed. All cases have the same initial modulus G0, and G0 G∞⁄ = 1 represents the 447 

pure elastic case with modulus G0 and no relaxation. (a, b) The stresses in the med-layer of the spherical 448 
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shell change over time for different viscoelastic properties. (c, d) The stresses along the shell thickness at 449 
𝑡𝑡 = 5𝜏𝜏𝑔𝑔 for varying viscoelastic properties.  450 

The differential growth of tissues inherently generates mechanical residual stresses, which 451 

evolve with time. The stresses, arising from the continuous cellular proliferation, 452 

differentiation, and extracellular matrix remodeling, significantly modulate the biomechanical 453 

environment and subsequently influence further growth. The stress accumulation rate is 454 

determined by the mechanical properties of the tissue. Fig. 5 illustrates the contrast of residual 455 

stresses induced during the processes of elastic and viscoelastic tumor growths. In the elastic 456 

tumor (with modulus G0 and no relaxation, thus is written as G0 G∞⁄ = 1), stress accumulation 457 

increases over time, whereas viscoelasticity facilitates stress relaxation (Fig. 5a-b). Tumors 458 

with higher viscoelastic relaxation (larger G0 G∞⁄ ) exhibit slower stress accumulation. As the 459 

viscoelastic properties vary, there is a noticeable difference in the stress distribution along the 460 

shell thickness (Fig. 5c-d). Stress magnitudes decrease across the spherical shell as the 461 

viscoelastic relaxation increases (G0 G∞⁄  becomes larger). This indicates that tumors with 462 

greater viscoelasticity exhibit more pronounced stress relaxation, thereby reducing the residual 463 

stress accumulation more effectively than less viscoelastic or purely elastic tumors. In practice, 464 

different tumors present various levels of stress relaxation or viscoelasticity, which may 465 

significantly influence their growth and development (Walker et al., 2023b).  466 

 467 

Fig. 6. The sum of the three principal stresses in a growing spherical shell–core tumor, with geometry 468 
Ri Ro⁄ = 0.5 and an incompressible non-growing core. (a) The variations of the mean principal stresses 469 
with time for different viscoelastic properties. (b) The sum of principal stresses versus modulus ratio at 470 
different times. All cases have the same initial modulus G0. A larger G0 G∞⁄  corresponds to more obvious 471 
viscoelasticity and greater stress relaxation.   472 

The growth equation in Eq. (38) is formulated in terms of the sum of three principal 473 

stresses. The accumulation of the total stress is faster in elastic tumors than that in viscoelastic 474 
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tumors (Fig. 6). Tumors with lower viscoelasticity (smaller G0 G∞⁄ ) exhibit a higher rate of 475 

stress accumulation, as indicated by the curves in Fig. 6a. The relation between the stress and 476 

viscoelastic modulus ratio in Fig. 6b demonstrates that the stress accumulation decreases as the 477 

viscoelasticity becomes more obvious at any given time. The elastic and viscoelastic properties 478 

of tumors determine their capacity for stress management. Elastic tumors maintain higher stress 479 

levels over time, whereas viscoelastic tumors experience lower stress levels due to substantial 480 

stress relaxation. These findings suggest that viscoelasticity can modify the overall stress level, 481 

which may be critical during tumor development. Furthermore, the overall stress state can 482 

influence the growth process as described in Eq. (38).  483 

3.2. Growth ratio  484 

Viscoelasticity can significantly influence tumor growth by modulating the stress level, 485 

which in turn affects the growth rate. Fig. 7 illustrates the effect of varying viscoelastic 486 

properties on the growth ratio and volume, with sufficient nutrient availability. The growth 487 

ratio refers to the relative increase in the tumor size. The growth process would stop where the 488 

residual stress reaches the maximum value, as described by Eq. (38). For more viscoelastic 489 

tumors (larger G0 G∞⁄ ), the growth ratio and the tumor volume exhibit a more pronounced 490 

increase with time (Fig. 7a and Fig. 7c). The relations between the growth ratio (or tumor 491 

volume) and the modulus ratio can present the effect of viscoelasticity more intuitively (Fig. 492 

7b and Fig. 7d). The growth ratio and volume are greater for more viscoelastic tumors at any 493 

given time. The model predicts that the viscoelastic properties are conducive to the growth 494 

because of the stress relaxation, which is consistent with the results that residual stresses can 495 

inhibit tumor growth (Goriely, 2017; Xue et al., 2016). In addition, the correlation between 496 

tumor viscoelasticity and growth rate is in accordance with the reported active particle 497 

simulations (Fig. S2), as well as with experimental observations that more fluid glioblastomas 498 

grow faster than the more solid meningiomas in the brain (Streitberger et al., 2020).  499 

During the processes of tissue development, wound healing, and lesion formation, the 500 

viscoelastic properties of tissues can undergo alteration through cell proliferation, 501 

differentiation, and remodeling of ECM (Fig. 2b). This mechanism significantly impacts the 502 

subsequent tissue growth. Our model can demonstrate how the changes in the viscoelastic 503 

properties affect the growth behavior. For spherical shell–core tumor growth, if the 504 

viscoelasticity of a tumor increases as it grows (G0 G∞⁄  becomes larger), the growth of the 505 

tumor is prolonged and the steady-state volume increases. (Fig. 8a, the green bold curve). In 506 
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tumors with higher viscoelasticity, the stresses can be relaxed more effectively, leading to 507 

sustained growth compared to those with lower viscoelasticity. Conversely, the tumors with 508 

increasing elasticity (G0 G∞⁄  becomes smaller) achieve smaller steady-state volumes and cease 509 

growing earlier (Fig. 8a, the brown bold curve). These results indicate that the variation in the 510 

tissue viscoelasticity during the growth process may establish a feedback loop that further 511 

influences tumor progression (Sauer et al., 2023).   512 

 513 

Fig. 7. The growth ratio and volume of a spherical shell–core tumor, with geometryRi Ro⁄ = 0.5  and an 514 
incompressible non-growing core. (a) The variations of the growth ratio with time for different viscoelastic 515 
properties. (b) The growth ratio versus the modulus ratio at different times. (c) The tumor volume over time 516 
for different viscoelastic properties. (d) The tumor volume versus the modulus ratio at different times.  517 

Mechanical factors, including the stresses and moduli, play a significant role in tissue 518 

growth. Additionally, tissue growth is influenced by the availability of nutrients (Soleimani et 519 

al., 2020; Xue et al., 2016). Eq. (38) describes mechanobiological growth, which is determined 520 

by both the stress state and nutrient density. The “nutrient density” includes the availability of 521 

essential nutrients, including glucose, amino acids, oxygen, and growth factors. We employ a 522 

total nutrient density function to represent these biochemical factors. The interaction between 523 
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mechanical stress and nutrient density in growth is illustrated in Fig. 8b. In this discussion, the 524 

nutrient is set and will be fully depleted when 𝑉𝑉 ∕ 𝑉𝑉0 = 5. This setting primarily serves to 525 

explore the interplay between mechanical signals and chemical cues during tissue growth. As 526 

the nutrients are consumed, the growth rate slows down, but the higher viscoelasticity allows 527 

a faster growth rate due to the less accumulation of residual stress. Due to this coupling 528 

mechanism, the tumor growth would stop once nutrients are exhausted, even if the critical 529 

residual stress has not yet been reached. In addition, the effect of nutrient consumption on 530 

growth rate is illustrated by comparison with the sufficient nutrient availability condition (Fig. 531 

S3). Consequently, both the residual stress and nutrient density modulate the growth of 532 

viscoelastic tumors.  533 

 534 

Fig. 8. Influence of viscoelasticity and nutrients on mechanobiological growth. A spherical shell–core 535 
structure with geometry Ri Ro⁄ = 0.5  and an incompressible non-growing core. (a) Changes in 536 
viscoelasticity during growth, resulting in different trends of growth volume. (b) The growth volume of the 537 
spherical shell over time, as determined by the residual stress and nutrient availability. In this analysis, the 538 
total nutrient supply is constant and the remaining nutrient density is inversely proportional to the growth 539 
volume.  540 

3.3. Mechano-chemo-biological mechanisms of viscoelastic growth 541 

Tumor growth is regulated by a complex interplay between mechanical properties and 542 

biochemical factors (Sun et al., 2022). Both mechanical stress and viscoelasticity influence 543 

cellular behavior through mechano-transduction pathways, and nutrient availability modulates 544 

metabolic activities that are essential for cell proliferation and ECM production. The 545 

synergistic effects of these factors are crucial for the development and morphogenesis of tissues. 546 

The multiscale mechano-chemo-biological mechanism that modulates tissue growth is 547 

schematized in Fig. 9. When the cells experience changes in the viscoelastic environment, their 548 
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mechano-transduction pathways are activated (Fan et al., 2024). These pathways convert 549 

mechanical signals into biological signals, which may regulate gene expression and cell 550 

proliferation. Integrins, transmembrane proteins, are responsible for sensing mechanical 551 

signals. The mechanical signal activates the Rho/ROCK signaling pathway, which can cause 552 

the dynamic evolution of the cytoskeleton. Subsequently, the transcription factor co-activators 553 

YAP and transcriptional coactivator with PDZ-binding motif (TAZ) are translocated to the 554 

nucleus to induce gene expression (Dupont et al., 2011), thereby promoting cell proliferation 555 

and tissue growth. The growth of tissue produces residual stresses, which inhibit further growth. 556 

While viscoelastic properties, due to the stress relaxation, can slow down the accumulation of 557 

residual stress, thereby facilitating sustained growth. The introduction of these integrated 558 

mechano-chemo-biological mechanisms deepens our understanding of tissue growth at 559 

multiple length scales, from the molecular, cellular to the tissue scale. This may inspire 560 

strategies to adjust various physiological factors for specific therapeutic techniques, which may 561 

also be valuable in the fields of tissue engineering and regenerative medicine.  562 

 563 

Fig. 9. Multiscale mechano-chemo-biological mechanisms of viscoelastic tissue growth. Integrins sense 564 
viscoelasticity, and then influence cell proliferation, which is also affected by nutrient availability. The 565 
growth produces residual stresses that inhibit further growth, but the stress will be partly relaxed due to 566 
viscoelasticity.  567 

4. Morphological evolution of a growing viscoelastic organoid 568 

Morphogenesis is a key issue in the development of tissues and organs (Yu and Li, 2024). 569 

Residual stresses accumulate during tissue growth, and mechanobiological instability may 570 

occur when a tissue experiences compressive stresses that exceed a certain threshold, leading 571 

to the formation of various surface patterns. On the basis of the above-formulated theory, we 572 
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now investigate how viscoelasticity regulates surface instability and the postbuckling 573 

morphological evolution of soft tissues.  574 

For illustration, we employ a growing viscoelastic spherical organoid model to elucidate 575 

the instabilities arising from tissue growth, with particular attention to the effects of 576 

viscoelasticity. For simplicity, the core of the organoid is assumed to be incompressible and 577 

non-growing, reflecting the nutrient and oxygen gradients established due to diffusion 578 

limitations in the central regions. The peripheral region, conversely, exhibits an enhanced rate 579 

of cell proliferation and tissue expansion (Karzbrun et al., 2018). This peripheral growth 580 

significantly contributes to the surface tension, potentially leading to buckling at the periphery 581 

(Riccobelli and Bevilacqua, 2020). The buckling and postbuckling behaviors are simulated 582 

using the finite element method (Abaqus). In the simulation, the four-node axisymmetric 583 

elements (CAX4R) are used to discretize the axisymmetric spherical shell–core structure. In 584 

the calculations, the mechanical deformation tensor 𝐅𝐅𝑎𝑎 can be obtained, and then the stresses 585 

are determined from 𝐅𝐅𝑎𝑎 and the viscoelastic modulus of Eq. (43). Finally, the growth state 586 

variable is calculated according to Eq. (38), and updated with 𝑔𝑔|𝑡𝑡+Δ𝑡𝑡 = 𝑔𝑔|𝑡𝑡 + 𝑔̇𝑔|𝑡𝑡Δ𝑡𝑡.  587 

4.1. Organoids with various viscoelastic properties  588 

We now examine the effects of viscoelastic relaxation on the surface instability of a 589 

homogeneous spherical organoid during growth. Fig. 10a shows that, for the same long-term 590 

modulus 𝐺𝐺∞ , viscoelastic growth enters the buckling instability more quickly than purely 591 

elastic growth, which is consistent with experimental observations (Elosegui-Artola et al., 592 

2022). It should be noted that the elastic case studied in this section corresponds to the long-593 

term modulus 𝐺𝐺∞ , and the viscoelastic cases have the same long-term modulus. The 594 

morphological evolution of spherical organoids varies with different relaxation times. The 595 

occurrence of buckling and the corresponding buckling mode depend on the viscoelastic 596 

relaxation rate, even if the modulus ratio remains constant (G0 G∞⁄ = 4, Fig. 10a). In the case 597 

of slow relaxation, residual stresses accumulate rapidly over time, leading to earlier buckling 598 

and larger deformation. For medium relaxation, buckling occurs at a moderate growth stage, 599 

with a higher buckling mode compared to the case of slow relaxation. The buckling of the fast 600 

relaxation case occurs much later, and the patterns resemble those of the elastic case (with the 601 

long-term modulus G∞), as the fast relaxation allows the residual stresses to dissipate quickly, 602 

making the relaxation modulus 𝐺𝐺1 almost irrelevant. The phase diagram (Fig. 10b) indicates 603 

that the relaxation rate determines the critical growth ratio (the maximum growth ratio before 604 
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buckling, which is extracted as the mean growth ratio of the last pre-buckling simulation step 605 

and the subsequent buckling step.) and the different buckling modes. Organoids with a slower 606 

relaxation rate buckle at lower growth ratios because of their faster stress accumulation. This 607 

relation highlights the importance of viscoelastic relaxation in determining the stability of 608 

growing organoids. Fig. 10c compares the results of our model with previous research, showing 609 

that viscoelasticity is associated with a more expeditious morphological evolution, i.e., a faster 610 

reduction in circularity compared to elasticity. Circularity, together with morphology and 611 

buckling mode, characterizes the morphological evolution process. For the reference results, 612 

the circularity is not equal to one because the initial state of their growing spherical tissue is 613 

not a perfect sphere. Besides, the thickness ratio and the modulus ratio between the spherical 614 

shell and core materials also affect the buckling behavior, which has been discussed in previous 615 

literatures (Holland et al., 2017; Huang et al., 2023; Li et al., 2011). This aspect will not be 616 

explored in the present study, which instead concentrates on the effect of viscoelasticity.  617 

 618 

Fig. 10. Instability of the homogeneous viscoelastic spherical shell–core organoids, with G0 G∞⁄ = 4, 619 

geometry Ri Ro⁄ = 0.9, and an incompressible non-growing core whose modulus is 𝐺𝐺core, and G∞ Gcore⁄ =620 

3. (a) The morphology changes of spherical shell–core profile over time, with different relaxation times 621 
resulting in different buckling modes. (b) Phase diagram of the critical buckling growth ratio versus 622 
relaxation time, with the same long-term modulus 𝐺𝐺∞. (c) Comparison with the results in other studies, and 623 

our results are calculated with viscoelastic parameters 𝜏̃𝜏𝑔𝑔 = 5, G0 G∞⁄ = 4. The circularity in our results is 624 

calculated by 4𝜋𝜋(𝑆𝑆area) ∕ (𝑙𝑙circumference)2, where 𝑆𝑆area is the area of the middle section, and 𝑙𝑙circumference 625 
is its circumference. The reference results are from (Elosegui-Artola et al., 2022), and the growth time is 626 
normalized. The relaxation time 𝜏̃𝜏g and growth time 𝑡̃𝑡 are made dimensionless by the characteristic growth 627 

time 1 ∕ �𝑓𝑓𝑔𝑔0𝐺𝐺∞� and the same below, where 𝑓𝑓𝑔𝑔0 denotes the initial nutrient effect as in Eq. (38).  628 
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The viscoelastic properties of organoids can exert an influence on their morphological 629 

evolution after buckling. Simulation results (Fig. 11) show the impact of viscoelastic properties 630 

(the relaxation modulus ratio and relaxation time) on the morphology of a growing spherical 631 

organoid. Fig. 11a illustrates the morphology of the middle section of the spherical shell–core 632 

after buckling, revealing that slower relaxation times lead to more pronounced deformation 633 

compared to faster relaxation times. In the slower relaxation time cases, different modulus 634 

ratios can lead to different buckling patterns and modes. When the relaxation time is very fast, 635 

the initial modulus 𝐺𝐺0 will quickly relax to the long-term modulus 𝐺𝐺∞, making the increase in 636 

the initial modulus (also the modulus ratio G0 G∞⁄  in this discussion) has little effect on the 637 

overall effective modulus. Circularity, a measure of how closely a shape resembles a perfect 638 

circle, is used to measure the rate of morphological evolution. Fig. 11b illustrates the circularity 639 

of the middle section of the shell–core for the same evolution time after buckling. The 640 

circularity exhibits different trends depending on the relaxation time and modulus. The slow 641 

relaxation case corresponds to a steeper curve, indicating a faster rate of evolution. In contrast, 642 

the evolution rate caused by the modulus ratio changes is almost negligible in the fast relaxation 643 

case. Additionally, the critical growth ratio is also related to the viscoelastic properties (Fig. 644 

11c). A lower critical growth ratio indicates that buckling occurs at a smaller growth volume. 645 

This figure indicates that a higher modulus ratio and slower relaxation rate lead to a smaller 646 

critical growth ratio, suggesting that only a smaller growth is needed to induce buckling in 647 

stiffer tissues.  648 

The relaxation modulus, along with the relaxation time, determines the effective modulus 649 

perceived during growth. These properties can influence the buckling behavior of the organoid 650 

and the resulting morphological changes. As illustrated in Fig. 12, the results show how 651 

viscoelastic properties affect the buckling mode number and critical growth ratio. Different 652 

relaxation times and viscoelastic modulus ratios lead to different effective moduli (can be 653 

calculated from Eq. (43)). A larger modulus ratio and slower relaxation time lead to fewer 654 

mode numbers (Fig. 12a) and smaller critical growth ratios (Fig. 12b), because this condition 655 

corresponds to a larger effective modulus and slower stress relaxation, which consequently 656 

results in a more rapid accumulation of residual stress. Additionally, higher stability (a larger 657 

volume before buckling, corresponding to larger critical growth ratios in Fig. 12b) corresponds 658 

to more complex buckling patterns (higher mode numbers). Conversely, lower stability 659 

(smaller critical growth ratios) is associated with simpler buckling patterns (lower mode 660 

numbers). These relations suggest that the buckling behavior and stability of growing organoids 661 
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can be regulated by adjusting the viscoelastic modulus ratio and relaxation time. This 662 

understanding may help to develop more effective tissue engineering strategies for the design 663 

of artificial tissues and the treatment of diseases characterized by abnormal tissue mechanics. 664 

It is also possible that the regulation of viscoelasticity may control the growth and 665 

morphogenesis of tissue during natural development, but this hypothesis requires further 666 

experimental verification.  667 

 668 

Fig. 11. Morphological evolution of the homogeneous viscoelastic spherical organoids for the same time 669 
after buckling (after unit characteristic growth time), with an incompressible non-growing core, the shell 670 
geometry Ri Ro⁄ = 0.9, and the same long-term modulus 𝐺𝐺∞. (a) Morphology of the spherical shell–core 671 

profile for different instantaneous moduli 𝐺𝐺0 at different relaxation times. A slower relaxation time results 672 
in a larger effective modulus. (b) Circularity of the middle section of the spherical shell–core for different 673 
relaxation times over the modulus ratio G0 G∞⁄ , with the same evolution time after buckling. (c) Critical 674 

growth ratios (when buckling occurs) over the modulus ratio G0 G∞⁄  for different relaxation times. The 675 
third configuration in the first row in (a) is symmetrical to the fourth because the rotationally symmetric 676 
buckling pattern indicates the same buckling mode for symmetrical geometry. In (b) and (c), the solid line 677 
corresponds to a B-spline curve, which is a smooth interpolation of the simulated data points.  678 

 679 
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Fig. 12. Phase diagram of the initial buckling mode number and critical growth ratio, with Ri Ro⁄ = 0.9, 680 
and an incompressible non-growing core. (a) Distribution of mode numbers as a function of viscoelastic 681 
modulus and relaxation time. (b) Distribution of critical growth ratios (when buckling occurs) as a function 682 
of viscoelastic modulus and relaxation time.  683 

4.2. Viscoelasticity changes during development 684 

During the process of growth, development, and pathological changes, tissues frequently 685 

undergo changes in their material properties. Changes in viscoelasticity often play a significant 686 

role and can serve as important physiological and pathological indicators (Cox, 2021; Fan et 687 

al., 2024; Hiscox et al., 2021). This discussion explores the impact of the transition between 688 

fast and slow relaxation times on morphology evolution. Fig. 13 displays how changes in 689 

relaxation time influence the morphological evolution of a growing organoid spheroid. The 690 

morphology of the spherical shell evolves as the relaxation time changes from fast to slow (Fig. 691 

13a) or slow to fast (Fig. 13c). As the relaxation slows down from a very fast rate, the resulting 692 

morphology (the first row of Fig. 13a) differs significantly from the cases with constant 693 

relaxation time (the second row of Fig. 13a). The evolution process is accelerated when the 694 

relaxation time is slowed, as evidenced by the change of the circularity trends (Fig. 13b). The 695 

rate of change in relaxation time (Fast-to-slow-1 vs Fast-to-slow-2 in Fig. 13b) also influences 696 

the morphological evolution path and its final state. A faster rate of change results in a faster 697 

evolution process. When the relaxation time becomes faster from a slow state, the 698 

morphological evolution slows down (the first row of  Fig. 13c), and the buckling mode 699 

changes during the evolution process. This leads to the nonmonotonic reduction of the 700 

circularity curve in Fig. 13d. These differences are driven by variations in the accumulation 701 

and dissipation of residual stresses within the tissue. As the viscoelastic properties undergo a 702 

transition, the stress accumulation and distribution adjust, leading to different deformation 703 

patterns and evolution rates. These results establish a clear link between the dynamic change 704 

in viscoelasticity during the development and morphological evolution of organoids. The rate 705 

and direction of viscoelasticity changes significantly influence the stability and morphological 706 

evolution. This viscoelastic effect on morphological evolution can also be extracted through 707 

some experimental observations (Fig. S4). Our findings contribute to a deeper understanding 708 

of mechanobiology and offer promising avenues for developing innovative strategies to 709 

manipulate tissue growth and address various pathological conditions. For example, adjustable 710 

viscoelasticity of biomaterials used in tissue scaffolds may have the potential to enhance their 711 

performance in promoting desired tissue growth and integration. In addition, the specific 712 

viscoelastic parameters in the theoretical and computational models should be determined by 713 
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further series of experimental tests, and then the theoretical and experimental results can be 714 

quantitatively compared.  715 

 716 

Fig. 13. Morphological evolution of the spherical shell whose viscoelasticity changes during the growth, 717 
with G0 G∞⁄ = 4, Ri Ro⁄ = 0.9, and an incompressible non-growing core. (a) Morphology of the middle 718 
section over time as the relaxation time changes from fast to slow. (b) The circularity of the middle section 719 
for different situations: constant viscoelasticity (Slow and Fast) and relaxation time changing from fast to 720 
slow at different rates (Fast-to-slow-1 and Fast-to-slow-2, and Fast-to-slow-2 corresponds to faster 721 
changing rate). (c) Morphology of the middle section over time as the relaxation time changes from slow 722 
to fast. (d) Circularity of the middle section for different situations: constant viscoelasticity (Slow and Fast) 723 
and relaxation time changes from slow to fast (Slow-to-fast). 724 

4.3. Different viscoelastic properties in different regions  725 

Tissues can exhibit different viscoelastic properties across different regions, and these 726 

spatial variations can significantly influence their morphological development (Hiscox et al., 727 

2020; Streitberger et al., 2020). Fig. 14a introduces the spatially varying viscoelastic properties 728 

within an organoid spheroid and investigates their effects on morphological evolution. The 729 

spherical shell model is divided into distinct viscoelastic zones, and each zone exhibits different 730 

viscoelastic moduli and relaxation times. In this study, three different cases are considered, 731 

where organoids are divided into four, six and ten distinct parts. As observed, the buckling 732 
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morphology of the spherical shell shows spatial differences, including the degree of folding 733 

and buckling mode number. When the tissue has different viscoelastic properties in different 734 

zones, it may grow in various patterns, which might be significant for its function. Our model 735 

is capable of simulating how different viscoelastic properties in various regions can modulate 736 

tissue folding patterns. This simple model can be further designed to simulate the 737 

heterogeneous nature of biological tissues, such as the brain organoid, which exhibit visible 738 

differences in folding patterns due to variations in mechanical properties (Fig. 14b). The 739 

viscoelastic nature of brain tissue is essential for the formation of cortical folds during 740 

development, and it can influence the patterns of gyri and sulci that emerge as the brain grows 741 

(Garcia et al., 2018). The spatiotemporal variation in brain viscoelasticity during development 742 

is thought to affect neural maturation in different brain regions. This variation contributes to 743 

the distinct developmental trajectories of various brain structures, and the brain tissue generally 744 

stiffens with maturation, with different regions exhibiting varying degrees of change in their 745 

viscoelastic properties (Karzbrun et al., 2018). Our mechanobiological model demonstrates 746 

that variations in viscoelastic properties across the tissue can significantly influence its overall 747 

morphology. These findings underscore the importance of understanding how regional 748 

differences in mechanical properties contribute to the structural and functional diversity of 749 

tissues.  750 

The influence of viscoelasticity on morphological evolution can be analyzed in terms of 751 

stress accumulation and relaxation dynamics. A region with a slower relaxation rate tends to 752 

accumulate residual stress more rapidly because it has less capacity for stress relaxation. This 753 

rapid accumulation of stress may not provide sufficient time for the stress to be distributed 754 

throughout the tissue, while the adjacent region may have a faster stress relaxation rate. These 755 

differences could lead to stress concentrations in certain regions and more abrupt and varied 756 

buckling patterns. Further research is needed to establish a clearer relation between specific 757 

folding patterns and viscoelastic properties. This could involve collecting additional 758 

experimental data or developing more sophisticated computational models that incorporate a 759 

wider range of biological factors.  760 
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 761 

Fig. 14. Morphological evolution of the spherical shell with different viscoelastic parts, with geometry 762 
Ri Ro⁄ = 0.9, and an incompressible non-growing core. (a) Schematic diagram of spherical shells with 763 
different viscoelastic parts and the finite element simulation of the morphological evolution. All parts have 764 
the same modulus, i.e., 𝐺𝐺0/𝐺𝐺∞ = 2, but different relaxation times. The relaxation times for the four parts 765 

are 𝜏̃𝜏=0.1, 0.3, 0.4, 0.6, for the six parts are 𝜏̃𝜏=0.1, 0.3, 0.4, 0.6, 0.85, 1.2, and for the ten parts are 𝜏̃𝜏=0.1, 766 
1.5, 0.2, 1.6, 0.1, 1.2, 0.6, 3.0, 0.1, 0.3. (b) Experimental results of the brain or organoid, showing different 767 
degrees of folding in different regions, adapted from (Karzbrun et al., 2018) and (Hiscox et al., 2020) .  768 

5. Conclusions 769 

In this paper, we have formulated a mechanobiological model to investigate the influences 770 

of viscoelastic properties of soft biological tissues. It provides a theoretical framework for 771 

studying the viscoelastic effects on the growth and morphogenesis of soft tissues. Using a 772 

spherical shell–core tumor model, it is found that tumors with the same initial modulus but 773 

higher viscoelasticity exhibit slower residual stress accumulation, leading to increased growth 774 

rates. In addition, nutrient availability also modulates the growth process, with reduced nutrient 775 

concentrations leading to decelerated growth over time. The finite element method is used to 776 

investigate how viscoelastic properties influence the stability and morphological evolution of 777 

growing organoids. The results indicate that for organoids with the same long-term modulus 778 

(storage modulus, 𝐺𝐺∞), those with higher viscoelasticity enter buckling earlier, in consistency 779 

with relevant experimental results (Elosegui-Artola et al., 2022). The relaxation modulus and 780 

time determine the buckling mode and subsequent deformation. Furthermore, the variations of 781 

viscoelasticity significantly affect growth stability and overall morphology, with changes in 782 

viscoelastic properties altering the speed of morphological evolution and potentially shifting 783 

the buckling mode. Additionally, organoids with region-specific viscoelastic properties exhibit 784 

distinct buckling patterns, providing insight into the diverse morphologies observed during 785 

organ development.  786 
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By bridging the gap between experimental observations and theoretical modeling, the 787 

present theory may help understand the morpho-mechanics of soft tissues (e.g., brains, tumors, 788 

and organs-on-a-chip), with potential implications for tissue engineering and disease treatment 789 

strategies. Although our model has incorporated some key factors of elasticity and 790 

viscoelasticity, the precise functional relation between viscoelastic properties and these factors 791 

needs to be elucidated through quantitative series experiments in the future. Besides, there are 792 

still many other important mechanisms that may influence the morphological evolution of 793 

tissues, such as specific genes or long-term biochemical signaling.  794 
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Appendix A. Transport equation 

Let 𝜌𝜌0 and 𝜌𝜌𝑔𝑔 denote densities of the tissue in the initial and virtual states, respectively. 

The element mass in the virtual state is d𝑚𝑚𝑔𝑔 = 𝜌𝜌𝑔𝑔d𝑉𝑉𝑔𝑔. Because no mass increases between 

the virtual and current states, the mass relation is 

d𝑚𝑚𝑔𝑔 = d𝑚𝑚, 𝜌𝜌𝑔𝑔d𝑉𝑉𝑔𝑔 = 𝜌𝜌d𝑉𝑉 = 𝜌𝜌𝜌𝜌d𝑉𝑉0 = 𝜌𝜌𝐽𝐽𝑎𝑎d𝑉𝑉𝑔𝑔 (S1) 

Thus, 

𝜌𝜌𝑔𝑔 = 𝜌𝜌𝐽𝐽𝑎𝑎 (S2) 

where d𝑉𝑉0 and d𝑉𝑉𝑔𝑔 denote the initial and virtual volume elements, respectively. It has d𝑉𝑉 =

𝐽𝐽d𝑉𝑉0 and d𝑉𝑉𝑔𝑔 = 𝐽𝐽𝑔𝑔d𝑉𝑉0 = 𝐽𝐽𝑎𝑎−1d𝑉𝑉. Besides, the mass growth without flux from the boundaries 

is, 

d
d𝑡𝑡

(𝜌𝜌d𝑉𝑉) = 𝜌𝜌𝛾𝛾𝑔𝑔d𝑉𝑉 (S3) 

Let 𝐴𝐴 denote a quality per unit current mass. By using 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉0, one has  

d
d𝑡𝑡

(𝐴𝐴𝐴𝐴d𝑉𝑉) =
d𝐴𝐴
d𝑡𝑡

𝜌𝜌d𝑉𝑉 + 𝐴𝐴
d
d𝑡𝑡

(𝜌𝜌d𝑉𝑉) =
d𝐴𝐴
d𝑡𝑡

𝜌𝜌d𝑉𝑉 + 𝐴𝐴𝐴𝐴𝛾𝛾𝑔𝑔d𝑉𝑉 (S4) 

and its integration gives 

d
d𝑡𝑡
�𝐴𝐴𝐴𝐴d𝑉𝑉
Ω

= �
d(𝐴𝐴𝐴𝐴)

d𝑡𝑡
d𝑉𝑉

Ω
+ �𝐴𝐴𝐴𝐴

Ω
div 𝐯𝐯 d𝑉𝑉 = � 𝜌𝜌

d𝐴𝐴
d𝑡𝑡

d𝑉𝑉
Ω

+ �𝜌𝜌𝛾𝛾𝑔𝑔𝐴𝐴d𝑉𝑉
Ω

(S5) 

which is the growth rate related transport equation. 

Appendix B. Multiscale viscoelastic model   

Viscoelasticity of tissue can be expressed as the effects of several key factors at multiscale. 

These effects may be simplified and abstracted as a modulus function, i.e., 𝐺𝐺 =

𝑓𝑓(𝐷𝐷,𝐶𝐶,𝑀𝑀,𝐴𝐴,𝑅𝑅), where 𝐷𝐷,𝐶𝐶,𝑀𝑀,𝐴𝐴, and 𝑅𝑅 denote the effect of cell density, cell types, ECM 

property, adhesion effect, and cytoskeleton evolution, respectively (Fig. S1a). In the 

following, we illustrate the relations between viscoelastic parameters and the cell-to-tissue 

phenomena.  
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Experimental studies have shown that the cell density varies in different regions of 

zebrafish embryos along the AP axis (Mongera et al., 2023). The modulus and viscosity 

decrease as the extracellular spaces between cells increase (Fig. S2b). Therefore, we can 

simply give the relation between cell density and viscoelastic parameter, as  

𝐺𝐺𝐷𝐷∞ =
𝑘𝑘1

𝐷𝐷density
, 𝜉𝜉𝐷𝐷 =

𝑘𝑘2
𝐷𝐷density

, (S6) 

where 𝐺𝐺𝐷𝐷∞ and 𝜉𝜉𝐷𝐷 are the long-term modulus and viscosity parameter due to the effect of 

cell density, and 𝑘𝑘1 and 𝑘𝑘2 are two parameters to be determined. 

For the adhesion effect, drawing on the relation between cell-cell tension and tissue 

viscosity in the previous study (Fig. S1c), we can simply give  

𝜉𝜉𝐴𝐴 = 𝑘𝑘3 exp(𝐴𝐴c−adhesion) + 𝑘𝑘4 exp(𝐴𝐴i−adhesion) , (S7) 

where 𝜉𝜉𝐴𝐴 is the viscosity parameter due to the effect of adhesion, 𝐴𝐴c−adhesion and 𝐴𝐴i−adhesion 

correspond to cell-cell adhesion and cell-matrix adhesion, respectively, 𝑘𝑘3  and 𝑘𝑘4  are 

parameters to be determined. For the ECM effect, previous studies have shown that the 

stiffness and viscosity increase with as liver fibrosis (Fan et al., 2024; Lyu et al., 2023; Fig. 

S1d). Therefore, we try to give the relation  

𝐺𝐺𝑀𝑀∞ = 𝑘𝑘5𝑀𝑀n−fibril + 𝑘𝑘6𝑀𝑀n−crosslinker,
𝜉𝜉𝑀𝑀 = 𝑘𝑘7𝑀𝑀n−fibril + 𝑘𝑘8𝑀𝑀n−crosslinker, (S8) 

where 𝐺𝐺𝑀𝑀∞ and 𝜉𝜉𝑀𝑀  are the long-term modulus and viscosity parameter of ECM, 𝑀𝑀n−fibril 

and 𝑀𝑀n−crosslinker correspond to the density of fibrils and crosslinkers, respectively, 𝑘𝑘5~𝑘𝑘8 

are parameters to be determined.  

Different types of cells have various stiffness and viscosity. Simply, we can use the 

homogenization method to obtain the modulus and viscosity in a representative element, as 

𝐺𝐺𝐶𝐶∞ =
∑ 𝐺𝐺𝑖𝑖𝑉𝑉𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑉𝑉
, 𝜉𝜉𝐶𝐶 =

∑ 𝜉𝜉𝑖𝑖𝑉𝑉𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑉𝑉
, (S9) 

where 𝐺𝐺𝐶𝐶∞  and 𝜉𝜉𝐶𝐶  are the long-term modulus and the viscosity parameter that combine 

different types of cells, 𝐺𝐺𝑖𝑖 , 𝜉𝜉𝑖𝑖  and 𝑉𝑉𝑖𝑖  are the long-term modulus, viscosity parameter and 

volume of the 𝑖𝑖  type cell, 𝑉𝑉  is the total volume of the representative element. The 

cytoskeleton and cell contractility can influence the viscoelasticity of a cell (Galie et al., 2022; 

Yin et al., 2022). This effect in captured in 𝐺𝐺𝑖𝑖  and 𝜉𝜉𝑖𝑖 , while the quantitative metrics for 

viscoelastic parameters need further study.  
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Fig. S1. Multiscale viscoelastic mechanisms. (a) Methodology to correlate macroscopic viscoelasticity 

with underlying multiscale mechanisms. (b) Viscoelasticity varies with cell density in different parts of 

zebrafish embryos, where A-PSM: presomitic mesoderm in the AP axis, P-PSM: posterior presomitic 

mesoderm, MPZ: lateral part of the mesodermal progenitor zone (Mongera et al., 2023). (c) Influence of 

cell-cell adhesion on tissue viscosity (Petridou et al., 2021). (d) Schematic of ECM fibrils and crosslinking 

(left) and modulation of crosslinking on collagen matrix (right, Lyu et al., 2023). Longer relaxation time 

𝜏𝜏1/2 corresponds to larger viscosity.  

Eqs. (S6-S9) represent different scale influences on viscoelasticity. To combine these 

multiscale effects, we may  borrow ideas from the cross-scale viscoelasticity theory (Ding et 

al., 2024; Lin et al., 2021; Lin and Wei, 2022, 2020). We write the total potential energy 

density as  

𝑤𝑤 =
1
2

(𝐺𝐺𝐷𝐷 ∗ d𝜀𝜀𝐷𝐷 ∗ d𝜀𝜀𝐷𝐷 + 𝐺𝐺𝐴𝐴 ∗ d𝜀𝜀𝐴𝐴 ∗ d𝜀𝜀𝐴𝐴 + 𝐺𝐺𝑀𝑀 ∗ d𝜀𝜀𝑀𝑀 ∗ d𝜀𝜀𝑀𝑀 + 𝐺𝐺𝐶𝐶 ∗ d𝜀𝜀𝐶𝐶 ∗ d𝜀𝜀𝐶𝐶), (S10) 

where 𝐺𝐺∎  denotes the viscoelastic modulus related to different effects, 𝜀𝜀∎  is the 

corresponding strain, ∗  is the Stieltjes convolution symbol. The Stieltjes convolution is 

defined as 𝜙𝜙 ∗ d𝜑𝜑 =  ∫ 𝜙𝜙(𝑡𝑡 − 𝜁𝜁)𝜑̇𝜑(𝜁𝜁)d𝑡𝑡𝑡𝑡
−∞ . Strains from different scales can be related. If we 

give an effective strain 𝜀𝜀e, the corresponding effective stress can be 𝜎𝜎e = 𝜕𝜕𝜕𝜕 𝜕𝜕𝜀𝜀e⁄ . The stress 

can be written as 𝜎𝜎e = 𝐺𝐺 ∗ d𝜀𝜀e, where 𝐺𝐺 is the effective modulus, as  

𝐺𝐺 = 𝑓𝑓(𝐷𝐷,𝐶𝐶,𝑀𝑀,𝐴𝐴,𝑅𝑅, 𝑡𝑡). (S11) 
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It should consist of a purely elastic part (long-term modulus 𝐺𝐺∞), a viscous part (viscosity 𝜉𝜉), 

and a related elastic part 𝐺𝐺1 at least to characterize the relaxation time together with 𝜉𝜉. To 

explicitly show the effect of viscoelasticity, we combine these parameters based on the three-

parameter viscoelastic model (Fig. 2c). Therefore, the effective modulus can be written as 

𝐺𝐺(𝑡𝑡) = 𝐺𝐺∞ + 𝐺𝐺1exp (−𝑡𝑡 G1 ξ⁄ ). The changes in viscoelastic modulus and relaxation time 

during tissue development (Section 4, Fig. 10) are related to multiscale mechanisms. For 

example, the increase in modulus and viscosity may correspond to the process of fibrosis or 

cell jamming.  

However, the influence of multiscale phenomena cannot be completely separated. For 

example, the difference in cell density in Fig. S1b would involve cell-cell adhesion. The 

change in ECM property would also influence cell-ECM adhesion. This section only presents 

a rough equivalent thought and methodology. Further experimental and theoretical studies 

are needed to capture the complex relation between multiscale mechanisms and viscoelastic 

parameters.  

Appendix C. Viscoelastic effects on tissue growth  

Our model predicts that viscoelastic properties facilitate tissue growth by reducing the 

rate of residual stress accumulation. This is consistent with the stress-induced growth studies, 

where smaller residual stress is beneficial for growth. Furthermore, we compare our results 

with the simulation results reported by Elosegui-Artola et al., as shown in Fig. S2. Their 

study investigates tissue growth in viscoelastic and elastic environments using a four-

parameter viscoelastic model, and the observed trends regarding the influence of 

viscoelasticity on growth rates are consistent with our findings. Besides, different viscoelastic 

models have been used to characterize the viscoelasticity of tissues, such as the Maxwell 

model, the three-parameter model, the four-parameter model, and the generalized Maxwell 

model. In this paper, we use the widely used three-parameter model.  
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Fig. S2. Comparison between our results and some previous studies on the viscoelastic effects on tissue 
growth. (a) Comparison between our model and the active particle simulations made by Elosegui-Artola 
et al. (b) The four-parameter viscoelastic parameter and an active particle model used by Elosegui-Artola 
et al.  

Appendix D. Effects of nutrition consumption  

The mechanobiological growth of soft biological tissues is determined by both stress state 

and nutrient density. Nutrients can include the availability of essential nutrients, including 

glucose, amino acids, oxygen, and growth factors. We use a total nutrient density function to 

represent these biochemical factors. The comparison between the sufficient and limited 

nutrient availability conditions is illustrated in Fig. S3. It shows that limited nutrient 

availability may significantly slow the growth rate.  

 

Fig. S3. Effects of nutrient density on tissue growth. The solid curves correspond to the sufficient nutrient 
availability condition, i.e., nutrient density does not decrease during growth. The dash-dot curves 
correspond to the limited nutrient availability condition, where the total nutrient supply remains constant, 
and the nutrient density decreases linearly as the growth volume increases.  
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Appendix E. Effects of viscoelastic changes on morphological evolution  

During tissue development, viscoelasticity can change, which may be be significant for 

the morphological evolution (Iwashita et al., 2014; Petridou and Heisenberg, 2019; 

Thompson et al., 2019). Fig. S4 shows the brain folding progress (Fig. S4a) and 

viscoelasticity during tissue development (Fig. S4b-c). It indicates that the viscoelasticity 

changes can influence the morphological changes, in qualitative consistency with our 

simulations, as shown in Fig.13. Studying the effect of relaxation time transitions on 

morphological evolution would require detailed parameterization in experiments.  

 

Fig. S4. Changes of viscoelasticity in developing brains and embryos. (a) Cortical folding progress is 
shown after birth in preterm human (Garcia et al., 2018). (b) Viscosity of zebrafish early embryos from 
the blastula (3 hpf) to the dome stage (4.3 hpf) (Petridou and Heisenberg, 2019). (c) Stiffness of 
developing mice cortex, where E12.5, E14.5, E16.5, and E18.5 denote different embryonic stages 
(Iwashita et al., 2014).   
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