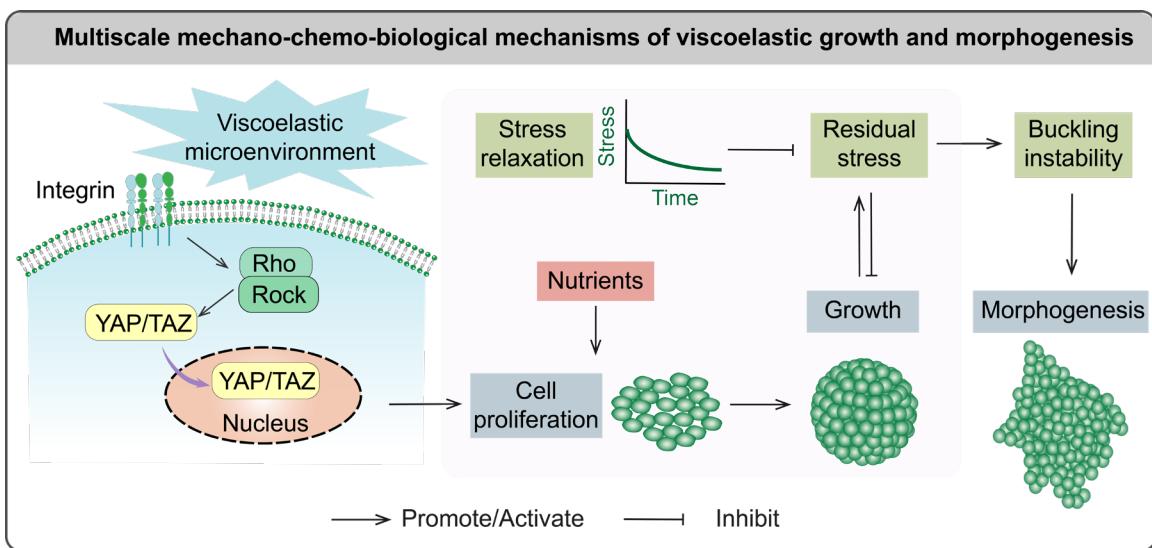


Graphical Abstract



A multiscale mechano-chemo-biological model is proposed to reveal the influences of viscoelasticity on the growth and morphogenesis of soft biological tissues and organs.

9 **Highlights**

10 • A multiscale mechano-chemo-biological model is proposed for the growth and
11 morphogenesis of soft tissues.

12 • Viscoelasticity significantly modulates the stress accumulation and growth of soft tissues
13 and organs.

14 • Viscoelastic effects on the surface instability and morphogenesis of growing organoids are
15 revealed.

16

17

Mechanobiological modeling of viscoelasticity in soft tissue growth and morphogenesis

Zhongya Lin¹, Weizhi Huang¹, Shuang Li¹, Mingfeng Wang², Jinshuai Bai¹, Xindong Chen¹,
Xi-Qiao Feng^{1,3,*}

¹ Institute of Biomechanics and Medical Engineering, AML Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

² Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, Stuttgart, Germany

³ *Mechano-X Institute, Tsinghua University, Beijing 100084, China*

Abstract

Most soft biological tissues feature distinct mechanical properties of viscoelasticity, which play a significant role in their growth, development, and morphogenesis. In this paper, we propose a mechanobiological viscoelastic model in the framework of thermodynamics. The multiscale mechanisms underlying the viscoelasticity of tissues are clarified, such as extracellular matrix composition and organization, cell types and states, dynamic cell–matrix and cell–cell interactions, and active cytoskeleton evolution. This model enables us to elucidate how viscoelastic effects modulate the growth and surface instability of soft tissues via coupled mechano-chemo-biological regulatory mechanisms. The proposed constitutive model is implemented into the finite element method, to explore the growth, stability, and morphological evolution of tissues. Illustrative examples, including tumor growth and organoid development, demonstrate that viscoelasticity can facilitate sustained tissue growth, and significantly influences the critical conditions of surface wrinkling and the morphological evolution of tissues. The results are consistent with relevant experimental observations. This study provides a theoretical model for growing soft tissues with viscoelastic effects, and holds promise for potential applications in clinical diagnosis and treatment of some diseases.

Keywords: Soft tissue; Growth; Viscoelasticity; Mechano-chemo-biological mechanism; Instability; Morphological evolution.

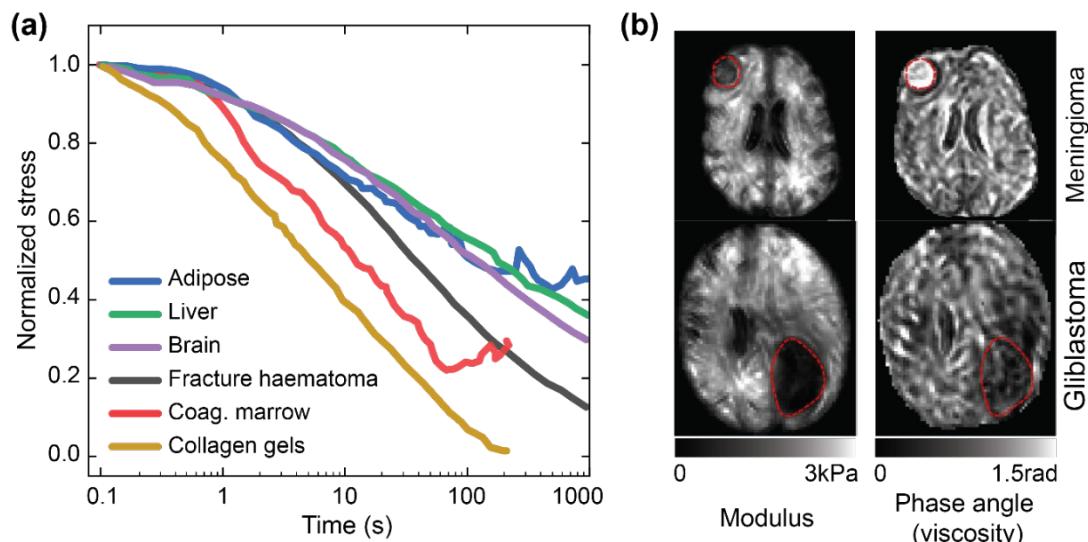
* Corresponding author: fengxq@tsinghua.edu.cn (X.-Q. Feng)

45 **1. Introduction**

46 Biological tissues coordinate a complex array of functions crucial for physiological
47 processes and structural integrity, which depend on the complicated yet precisely designed
48 interplay between biochemical compositions and mechanical properties (Cambria et al., 2024;
49 McGinn et al., 2021). During growth and development, tissues exhibit both recoverable elastic
50 deformation and time-dependent viscous behavior, known as viscoelasticity. Their mechanical
51 properties may vary in response to external stimuli, biochemical signals, and pathological
52 conditions (Katira et al., 2013; Persson et al., 2020). In recent years, the effects of viscoelastic
53 properties on tissue development and pathology have gathered extensive attention (Clément et
54 al., 2017; Fan et al., 2024).

55 Viscoelasticity is an intrinsic mechanical property of biological tissues (Fig. 1), e.g., brain,
56 skin, cartilage, blood vessels, and solid tumors (Hadzipasic et al., 2023; Zhang et al., 2021).
57 The viscoelastic properties of soft tissues originate from the combination of multiscale
58 mechano-chemo-biological mechanisms, including active cytoskeleton evolution, cell density,
59 cell division and arrangements, extracellular matrix compositions, and the duration of external
60 forces (Huang et al., 2019). Due to the specificity and complexity of these mechanisms, the
61 viscoelastic properties of different tissues exhibit a distinct diversity. For illustration, the
62 different stress relaxation rates of a few representative soft tissues are shown in Fig. 1a.
63 Viscoelasticity plays a crucial role in volumetric growth, morphological development,
64 biological functions, and responses to various mechanical and biochemical cues (Mierke, 2022).
65 During embryonic development, for example, the posterior tissues undergo viscoelastic
66 changes from a fluid-like state to a solid-like one, which allows for the elongation of the
67 vertebrate body axis (Mongera et al., 2018). The viscoelastic properties of the matrix can
68 influence the proliferation and differentiation of stem cells by regulating integrin-based
69 adhesion, actomyosin contractility, and nuclear localization of Yes-associated protein (YAP)
70 (Chaudhuri et al., 2016). In wound healing, the fluidization of tissue, corresponding to a
71 reduction in cell junctional tension and cell–cell adhesion, allows for faster wound closure
72 through increased cell movement and rearrangement (Tetley et al., 2019). Appropriate
73 viscoelastic properties may also enhance tissue regeneration by promoting favorable cellular
74 activities (Patiño Vargas et al., 2022), which may reduce scar thickness and ensure the
75 restoration of tissue function. Pathological changes, such as cancer progression, fibrosis, and
76 tissue degeneration are also closely related to viscoelasticity. Tumor cells can sense tissue
77 stiffness and viscoelasticity, which may affect their biochemical signaling pathways and

78 proliferation (Fan et al., 2024). Furthermore, viscosity may affect the epigenetics of cancer
 79 cells to form mechanical memory (Li et al., 2024), which impacts the development of cancer
 80 (Bera et al., 2022). Fibrosis is associated with alterations in viscoelastic properties. Monitoring
 81 viscoelasticity changes may aid in the early diagnosis of fibrosis before significant tissue
 82 stiffening occurs (Long et al., 2021; Reiter et al., 2021). Brain episodic memory performance
 83 is related to hippocampal viscoelasticity, and it can serve as a biomarker corresponding to
 84 cognitive decline due to aging or brain diseases (Hiscox et al., 2021). In the field of tissue
 85 engineering, viscoelastic properties are critical for designing scaffolds that can mimic the
 86 mechanical behavior of native tissues (Foroughi et al., 2023). Therefore, it is significant to
 87 elucidate the mechanical, chemical, and biological mechanisms underlying the viscoelastic
 88 effects of tissues, which affect their deformation, development, adaptation, and structural
 89 integrity under different physiological and pathological conditions. Recent studies also suggest
 90 that understanding viscoelastic effects may help develop novel diagnostic and therapeutic
 91 strategies (Chang et al., 2023; Wu et al., 2022).



92 **Fig. 1.** Viscoelasticity of soft biological tissues. (a) Stress relaxation curves of tissues and collagen gels,
 93 which demonstrate significant viscoelastic properties, adapted from (Chaudhuri et al., 2020). (b)
 94 Viscoelasticity of two brain tumors, with different moduli and phase angles of viscosity; adapted from
 95 (Streitberger et al., 2020). The two tumors have different growth rates and invasion capabilities.

96 Much experimental effort has been directed toward exploring the viscoelastic properties
 97 effects and mechanisms of tissues. Such experimental techniques as rheometer, atomic force
 98 microscopy (AFM), and magnetic resonance elastography (MRE) have been employed to
 99 quantify the viscoelastic properties of various tissues (Huang et al., 2019; Zhang et al., 2021).

101 The rheometer determines the viscoelastic properties by applying oscillatory shear stresses to
102 a tissue and measuring the resultant strains under different loading conditions (Hobson et al.,
103 2021). AFM offers high-resolution mapping of static or dynamic mechanical properties at the
104 cellular and subcellular levels, enabling the study of local variations within tissues (Rebelo et
105 al., 2013; Rother et al., 2014). MRE provides a non-invasive method to assess the mechanical
106 properties of tissues *in vitro* and *in vivo*. This capability allows for monitoring changes in
107 viscoelastic properties induced by disease progression or treatment, such as liver fibrosis, brain
108 tumors, and cardiovascular diseases (Reiter et al., 2021; Zhang et al., 2021). These
109 investigations are valuable for understanding the mechanical behavior of tissues under different
110 physiological and pathological conditions. Studies using these techniques have revealed that
111 viscoelasticity can regulate spatiotemporal tissue organization, driving tissue growth dynamics
112 and symmetry-breaking instabilities like buckling, folding, and fingering (Mao and Wickström,
113 2024). *In vitro* experiments have shown that tumors grow more rapidly in the viscoelastic
114 environment compared to their elastic counterpart, with viscoelasticity leading to early
115 branching or morphological instability (Elosegui-Artola et al., 2022). Different types of brain
116 tumors exhibit significantly different viscoelastic properties (Fig. 1b), leading to their different
117 growth rates and invasive behaviors. Consequently, targeting the viscoelastic properties of the
118 tumor microenvironment could be a novel approach to inhibit tumor growth and metastasis
119 (Streitberger et al., 2020). These experimental findings provide a foundation for theoretical
120 modeling to capture the complex interplay among viscoelasticity, tissue growth, and
121 morphological evolution.

122 The biomechanical mass stress relation proposed in the 1990s (Fung, 1990) states that
123 growth and remodeling mechanics should account for the changes in the stress-free
124 configuration due to mass changes. It provides a framework for modeling the growth and
125 remodeling of living tissues. On this basis, quite a few hyperelastic theoretical models have
126 been developed to describe the growth of tissues. Usually, these models introduce a set of
127 kinematic and kinetic equations to capture the complex interactions between mechanical forces
128 and biological processes (Goriely, 2017; Sun et al., 2022). The hyperelastic continuum model
129 provides a valuable framework for understanding the elastic behavior of tissues and their
130 responses to mechanical forces. Residual stresses, arising from differential and incompatible
131 growth and deformation, play a pivotal role in the growth and various morphogenetic processes,
132 such as tissue folding and branching (Ambrosi et al., 2019; Xu et al., 2022). The porous matrix
133 biomechanical model, which treats the tissue as a composite material consisting of a solid

matrix and a fluid-filled pore space, has also been employed to study growth-induced solid stresses within tissues (Xue et al., 2018; Xue et al., 2016). The coupling effects between the solid and fluid phases are important for the growth and morphological evolution of tissues under different physiological and pathological conditions. The incremental hyperelastic constitutive method, incorporating constraint conditions such as incompressibility and interfacial continuity, has been used in the analysis of growth-induced instabilities (Ben Amar and Goriely, 2005; Huang et al., 2024; Wang et al., 2023). It characterizes how tissues respond to incremental changes in volumetric growth and mechanical loading, providing a more nuanced understanding of the conditions that lead to instability and subsequent development of complex tissue patterns. These previous significant works mainly concentrate on the elastic components or mechanical interactions, and they have not examined the time-dependent viscoelastic behaviors of tissues. Recently, a finite hyper-viscoelastic model has been developed to capture the nonlinear viscous effects of soft tissues under complex loading (Panda and Buist, 2018). The Prony-series viscoelastic model is employed to capture the complex viscoelastic behaviors of different brain regions (Morrison et al., 2023). The Saffman-Taylor instability model has been applied to explain why brain tumors with higher viscosity are more aggressive and infiltrative (Streitberger et al., 2020). The buckling instability of epithelial tissues is a key issue in developmental biology. A multiscale biomechanical study elucidated that viscoelasticity contributes significantly to both the buckling mode and the postbuckling phase transition of an epithelial monolayer (Wang et al., 2024). These viscoelastic models help understand how tissues gradually respond to mechanical stimuli over time and the long-term viscoelastic behavior of tissues. However, viscoelastic models should be combined with growth laws to fully capture the interplay between time-dependent mechanical stimuli, tissue growth, and buckling instability processes.

In this paper, by considering the mechano-chemo-biological mechanisms involved in the development of soft tissues, we present a mechanobiological viscoelastic model to investigate the viscoelastic effects on their growth, instability, and morphological evolution. This paper is organized as follows. In Section 2, we present the mechano-chemo-biological mechanisms of tissue viscoelasticity, and then formulate a mechanobiological growth model with viscoelastic and nutrition concertation effects. In Section 3, through the spherical shell–core model for a tumor spheroid, we examine the impact of viscoelasticity on the residual stress accumulation and growth rate. Section 4 analyzes the influences of viscoelasticity on the instability and morphological evolution of the spherical organoid with differential growth. This is

167 accomplished through the finite element method by implementing the proposed constitutive
168 model. Finally, the main conclusions drawn from this study are summarized in Section 5.

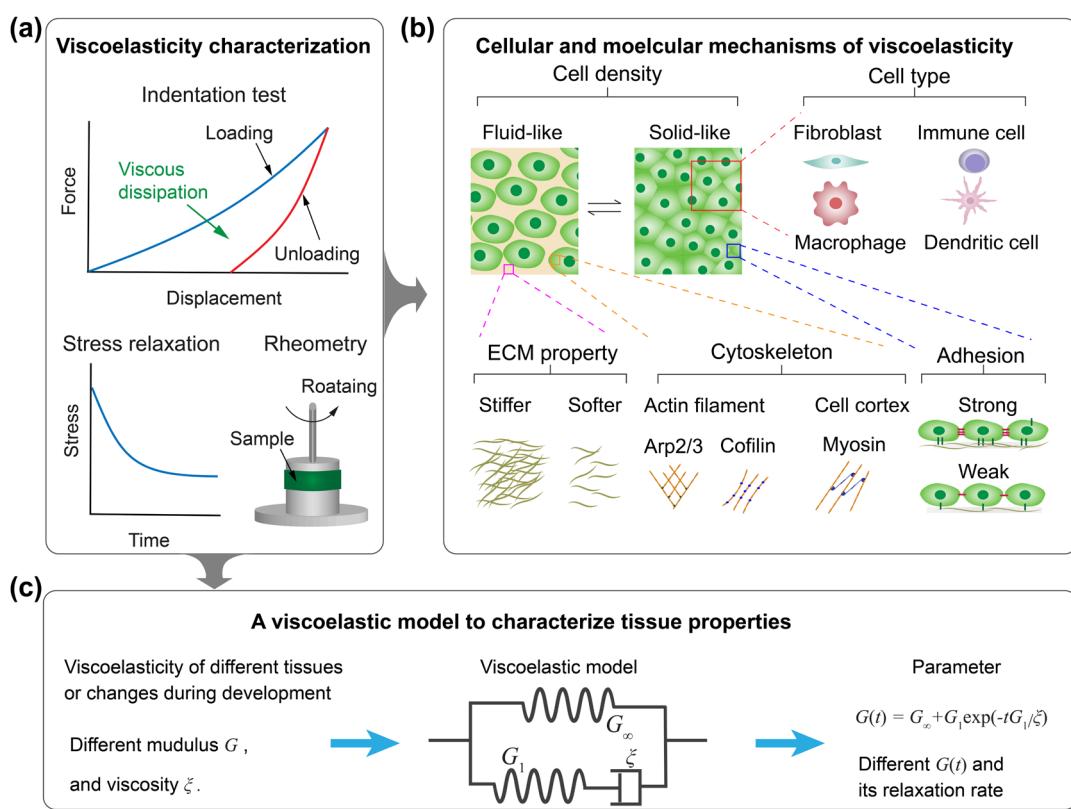
169 **2. Mechanobiological model**

170 *2.1. Mechano-chemo-biological mechanisms of tissue viscoelasticity*

171 Both elastic and viscous properties are significant for soft tissues to withstand and adapt to
172 their dynamic biomechanical environments. The viscoelasticity of tissues has been studied in
173 many experiments (Fig. 2a), which results from complicated mechano-chemo-biological
174 mechanisms (Fig. 2b). Viscoelasticity can change with growth and development under
175 pathological and physiological conditions (Cox, 2021; Huang et al., 2019). For instance, a
176 compact arrangement of cells exhibits more solid-like properties, whereas a dispersed
177 arrangement displays more fluid-like behavior (Mao and Wickström, 2024). The fluid-to-solid
178 transformation may play an important role in embryonic development (Mongera et al., 2018).
179 Due to cell differentiation, proliferation, and carcinogenesis, tissues may contain various types
180 of cells with different structural and mechanical properties in order to achieve their biological
181 functions (Hang et al., 2022). The extracellular matrix (ECM) provides mechanical, chemical,
182 and structural support to tissues. The density and orientation of ECM fibrils, such as collagen
183 and elastin, play a significant role in the variation of tissue viscoelastic properties (Chaudhuri
184 et al., 2020; Lyu et al., 2023). In addition, the interactions of cell-ECM and cell-cell, mediated
185 by integrins, cadherins and other adhesion molecules, are vital for maintaining the integrity and
186 distributing the mechanical stresses in the tissue. (Mao and Wickström, 2024). At the
187 subcellular scale, the evolution of the cytoskeleton (Pegoraro et al., 2017) and cell cortex (Yin
188 et al., 2022) may significantly influence the viscoelastic properties of cells and thereby
189 determine how tissues respond to external stimuli. Therefore, the types and arrangements of
190 cells within the tissue, ECM properties, cell interactions and actin cytoskeleton evolution
191 collectively determine the macroscale viscoelastic property of a tissue (Fig. 2b). In Appendix
192 B, we try to clarify how these multiscale mechanisms modulate the viscoelastic parameters.

193 To accurately characterize the viscoelastic behavior of soft tissues, it is crucial to utilize a
194 theoretical model that can encapsulate these multifaceted interactions. Some simple
195 viscoelastic models consisting of springs and dashpots have been used to describe the
196 viscoelastic properties of tissues (Elosegui-Artola et al., 2022; Mongera et al., 2023). In this
197 study, the specific viscoelastic properties are tentatively modeled by a three-parameter

198 viscoelastic model (Fig. 2c), which is a combination of spring and dashpot elements (Lin and
 199 Wei, 2020). This model serves as a bridge, linking the mechano-chemo-biological properties
 200 at the cellular and molecular levels to the observable macroscopic viscoelastic behavior of the
 201 tissue. The variations in the relaxation modulus and relaxation time are correlated with these
 202 multiscale mechanisms and their changes. These variations further affect the values of the
 203 viscoelastic moduli, which can be formulated, for example, as $G(t) = G_\infty + G_1 \exp(-t G_1 / \xi)$.
 204 This function will be employed to distinguish the specific types of tissues and to characterize
 205 the temporal evolution of their viscoelastic behavior. Furthermore, this viscoelastic model will
 206 be integrated into the tissue growth law in the following section.



207
 208 **Fig. 2.** Mechanisms and modeling of viscoelastic properties of soft tissues. (a) Viscoelastic behavior of
 209 tissues tested by many experimental techniques. (b) Cellular and molecular mechanisms underlying the
 210 elastic and viscoelastic behaviors of a tissue. (c) A three-parameter viscoelastic model is here taken as an
 211 example to characterize the viscoelasticity of different tissues and changes in viscoelasticity, through the
 212 different viscoelastic moduli and relaxation times.

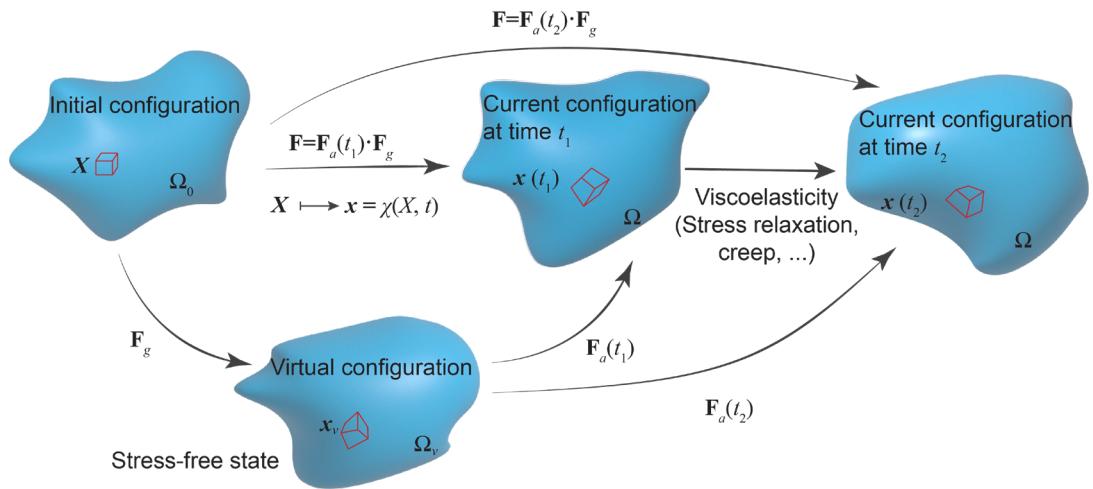
213 *2.2. Mechanobiological growth model with viscoelastic effects*

214 Consider a body in the three-dimensional Euclidean space \mathbb{E}^3 , as shown in Fig. 3, where
 215 Ω_0 is the initial (reference) configuration (at time t_0), and Ω is the current configuration (at
 216 time t). \mathbf{X} and \mathbf{x} denote the positions of a material point in the two configurations, respectively.

217 For a tissue with differential volume growth and large deformation, we adopt the
 218 decomposition of the deformation gradient tensor \mathbf{F} (Rodriguez et al., 1994; Zhou et al., 2018).
 219 It is expressed as

220
$$\mathbf{F} = \mathbf{F}_a \cdot \mathbf{F}_g , \quad (1)$$

221 where \mathbf{F}_a denotes the mechanical deformation tensor with the viscoelastic effect, and \mathbf{F}_g
 222 denotes the growth tensor. A stress-free intermediate configuration Ω_v is also defined, which
 223 is often incompatible in the case of differential growth, as illustrated in Fig. 3. Due to the
 224 viscoelastic effect, i.e., stress relaxation and creep, the deformation tensor evolves, leading to
 225 the evolution of both the intermediate and current configurations. The synergistic effects of
 226 elastic and viscoelastic deformation and volumetric growth may greatly influence the
 227 morphological instability and evolutions of tissues under various physiological and
 228 pathological conditions, as we will show below.



229

230 **Fig. 3.** Schematic diagram of multiplicative decomposition. The growth tensor \mathbf{F}_g at time t_1 leads to the
 231 current configuration $\Omega(t_1)$, and the corresponding deformation gradient is decomposed into $\mathbf{F}_a(t_1)$ and \mathbf{F}_g .
 232 The situation is similar for at time t_2 . A material point with the coordinate vector \mathbf{X} in the initial
 233 configuration is mapped to \mathbf{x} in the current configuration by $\chi(\mathbf{X}, t)$. The viscoelasticity leads to time-
 234 dependent deformation, which evolves with time.

235 *2.2.1. Mass balance equation*

236 In general, tissue growth can occur through coupled volumetric growth and material flux
 237 across its boundary $\partial\Omega$. Let the volumetric growth function $\rho\gamma_g$ denote the mass increase due
 238 to cell proliferation or ECM synthesis per unit volume in the current configuration, where
 239 $\gamma_g(\mathbf{x})$ is the growth rate function and $\rho = dm/dV$ is the mass density. The flux of material
 240 through the boundary corresponds to the vector \mathbf{R}_f . Thus, the mass balance is

241

$$\frac{d}{dt} \int_{\Omega} (dm) = \frac{d}{dt} \int_{\Omega} (\rho dV) = \int_{\Omega} \rho \gamma_g dV + \int_{\partial\Omega} \mathbf{R}_f \cdot \mathbf{n} dS. \quad (2)$$

242 The volume rate is proportional to the divergence of the velocity field, that is,

243

$$\frac{d}{dt} (dV) = \operatorname{div} \mathbf{v} dV, \quad (3)$$

244 where \mathbf{v} denotes the velocity vector. By applying the divergence theorem, the mass balance
245 equation for a growing continuum can be obtained from Eq. (2) as

246

$$\dot{\rho} + \rho \operatorname{div} \mathbf{v} = \rho \gamma_g + \operatorname{div} \mathbf{R}_f, \quad (4)$$

247 where the dot above the variable stands for the material time derivative. In the case of slow
248 growth, the flux through the boundary can be neglected (Ben Amar and Goriely, 2005; Goriely,
249 2017), we have

250

$$\dot{\rho} + \rho \operatorname{div} \mathbf{v} = \rho \gamma_g. \quad (5)$$

251 Let ρ_0 and ρ_g denote the densities in the initial state and the virtual stress-free state,
252 respectively. The mass growth can also be written as

253

$$\frac{d}{dt} \int_{\Omega} (\rho_g dV_g) = \int_{\Omega} \rho_g \gamma_g dV_g, \quad (6)$$

254 where $\rho_g = dm_g/dV_g = dm/dV_g$, $J_g = \det(\mathbf{F}_g)$, $dV_g = J_g dV_0$ and $J = J_a J_g = \det(\mathbf{F}_a) \det(\mathbf{F}_g)$
255 are the measurement of the volume change. dV_0 denotes the initial volume element. When the
256 same mass density is assumed for the new tissue generated by growth and the original one, that
257 is, the constant density growth $\rho_0 = \rho_g$, we obtain

258

$$\gamma_g = J_g^{-1} \dot{J}_g = \operatorname{tr}(\mathbf{F}_g^{-1} \cdot \dot{\mathbf{F}}_g), \quad (7)$$

259 where $\dot{J}_g = J_g \operatorname{tr}(\mathbf{F}_g^{-1} \cdot \dot{\mathbf{F}}_g)$ is the Jacobi's formula.

260 *2.2.2. Momentum balance equation*

261 We assume that the newly added material due to tissue growth has the same properties as
262 the original one. Thus, the linear momentum balance of the growing tissue can be expressed as

263

$$\frac{d}{dt} \int_{\Omega} \rho \mathbf{v} dV = \int_{\partial\Omega} \mathbf{t} dS + \int_{\Omega} \rho \mathbf{f} dV + \int_{\Omega} \rho \gamma_g \mathbf{v} dV, \quad (8)$$

264 where \mathbf{t} and \mathbf{f} denote the surface traction and the body force, respectively. The surface traction
265 vector is related to the Cauchy stress, $\mathbf{t} = \sigma \cdot \mathbf{n}$, where \mathbf{n} is the unit outward normal to the

surface. Using the divergence theorem and Eq. (5), the differential form of Eq. (8) gives, that is, the balance of linear momentum (Rahman et al., 2017)

$$\rho \dot{\mathbf{v}} = \operatorname{div}(\sigma^T) + \rho \mathbf{f}. \quad (9)$$

Furthermore, the acceleration can be ignored for slow growth. In the absence of the body force, then Eq. (9) becomes

$$\operatorname{div}(\sigma) = 0. \quad (10)$$

The balance between the angular momentum and the applied torques for a growing continuum can be expressed as

$$\frac{d}{dt} \int_{\Omega} \rho \mathbf{x} \times \mathbf{v} dV = \int_{\partial\Omega} \mathbf{x} \times \mathbf{t} dS + \int_{\Omega} \rho \mathbf{x} \times \mathbf{f} dV + \int_{\Omega} \rho \gamma_g \mathbf{x} \times \mathbf{v} dV. \quad (11)$$

The transport and localization procedure lead to the symmetric condition for the Cauchy stress tensor $\sigma = \sigma^T$.

2.2.3. Energy and entropy equation

The kinetic energy equation for an isothermal growth at a physiological temperature can be expressed as (Ciarletta et al., 2012)

$$\frac{d}{dt} \int_{\Omega} K dV = P_i + P_e, \quad (12)$$

where K is the kinetic energy per unit volume, P_i and P_e denote the internal and external rates of mechanical work, respectively. Thus, they read

$$P_i = - \int_{\Omega} \sigma : \mathbf{D} dV, \quad (13)$$

$$P_e = - \int_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} dV + \int_{\partial\Omega} \mathbf{t} \cdot \mathbf{v} dS + \frac{1}{2} \int_{\Omega} \rho \gamma_g \mathbf{v} \cdot \mathbf{v} dV, \quad (14)$$

where $\mathbf{D} = 1/2 [\dot{\mathbf{F}} \cdot \mathbf{F}^{-1} + (\dot{\mathbf{F}} \cdot \mathbf{F}^{-1})^T]$ is the deformation rate.

Then, the first law of thermodynamics is applied to a growing continuum as the conversation of energy principle, that is,

$$\frac{d}{dt} \int_{\Omega} (\rho e + K) dV = P_e + \int_{\Omega} \rho \gamma_g e dV + \int_{\Omega} \mathbf{b}_g : \mathbf{L}_g dV + Q, \quad (15)$$

289 where e is the internal energy per unit current mass, $\mathbf{L}_g = \dot{\mathbf{F}}_g \cdot \mathbf{F}_g^{-1}$ denotes the growth rate
 290 tensor. \mathbf{b}_g denotes the homeostatic stress, which represents the biochemical and cellular
 291 activity involved in the growth process (Buskohl et al., 2014), and it work-conjugate to the
 292 growth rate tensor (DiCarlo and Quilotti, 2002). Q represents the total heat input rate, which
 293 is given as

$$294 \quad Q = \int_{\Omega} \rho \omega dV - \int_{\partial\Omega} \mathbf{q} \cdot \mathbf{n} dS, \quad (16)$$

295 where ω is the heat input rate per unit current mass, \mathbf{q} is the heat flux across the surface element.
 296 Therefore, the energy balance equation reads

$$297 \quad \rho \dot{e} = \sigma : \mathbf{D} + \mathbf{b}_g : \mathbf{L}_g + \rho \omega - \text{div}(\mathbf{q}). \quad (17)$$

298 Entropy measures the disorder induced by microscopic fluctuations. For a growing
 299 continuum, the integral form of the entropy equation can be expressed as

$$300 \quad \frac{d}{dt} \int_{\Omega} \rho s dV = \int_{\Omega} \rho \gamma_g s dV + \int_{\Omega} \rho \eta dV + \int_{\Omega} \frac{\rho \omega}{T} dV - \int_{\partial\Omega} \frac{1}{T} \mathbf{q} \cdot \mathbf{n} dS, \quad (18)$$

301 where s and η denote the entropy and the entropy production rate per unit current mass,
 302 respectively, T is the absolute temperature. Applying the divergence theorem and the transport
 303 equation Eq. (S5), it has

$$304 \quad \rho \dot{s} = \frac{\rho \omega}{T} - \text{div} \frac{\mathbf{q}}{T} + \rho \eta. \quad (19)$$

305 The second law of thermodynamics states that the internal entropy change rate of a system
 306 should not be smaller than the flow of entropy transferred to that system, that is $\eta \geq 0$.
 307 Therefore, from Eq. (19), the Clausius–Duhem inequality requires that

$$308 \quad \rho \dot{s} \geq \frac{\rho \omega}{T} - \text{div} \frac{\mathbf{q}}{T}. \quad (20)$$

309 The relation between the specific internal energy e and the specific free energy ψ can be
 310 obtained from the Legendre transformation,

$$311 \quad \psi = e - Ts. \quad (21)$$

312 Combining Eqs. (17), (20) and (21), we obtain the inequality

$$313 \quad \rho \dot{\psi} \leq \sigma : \mathbf{D} + \mathbf{b}_g : \mathbf{L}_g - \rho s \dot{T} - \frac{1}{T} \mathbf{q} \cdot \text{grad}(T). \quad (22)$$

314 2.2.4. Viscoelastic constitutive relation of growing tissues

315 Assume that the deformation gradient $F_{ij}(t)$ and temperature $T(t)$ are continuous in the
 316 interval $0 < t < \infty$, that is, it follows from the Stone-Weierstrass theorem. Referring to the
 317 polynomial expansion of the free energy in terms of Stieltjes integrals (Christensen and Naghdi,
 318 1967), $\rho\psi$ can be simplified as

$$319 \quad \rho\psi = \rho\psi_0 + \int_{-\infty}^t \mathbf{A}(t-\zeta) : \frac{\partial \mathbf{F}_a}{\partial \zeta} d\zeta - \int_{-\infty}^t \beta(t-\zeta) \frac{\partial T_d}{\partial \zeta} d\zeta \\ + W_c(\mathbf{F}_a, t) - \int_{-\infty}^t \int_{-\infty}^t \kappa(t-\zeta_1, t-\zeta_2) \frac{\partial T_d}{\partial \zeta_1} \frac{\partial T_d}{\partial \zeta_2} d\zeta_1 d\zeta_2 + \dots, \quad (23)$$

320 where ψ_0 is the mean free energy, $T_d(t)$ is the temperature difference from the base
 321 temperature T_0 , and $T = T_0 + T_d$. W_c denotes the deformation energy of per unit volume in the
 322 current configuration, and its incompressible viscoelastic expression is assumed as $W_c =$
 323 $\frac{1}{2} \int_{-\infty}^t G(t-\zeta) \cdot \{d[\text{tr}(\mathbf{F}_a \cdot \mathbf{F}_a^T) - 3]/d\zeta\} d\zeta$, where $G(t)$ is the relaxation function. $\kappa(t)$ is
 324 another appropriate relaxation function form of the mechanical property. In the expansion, the
 325 coupling of viscoelastic deformation and temperature is ignored. The integration functions are
 326 continuous for $t > 0$ and are assumed to vanish identically for $t \leq 0$. Substituting Eq. (23)
 327 into (22) and doing the indicated differentiation with respect to t , one obtains

$$328 \quad \left(-\mathbf{A}_0 - \frac{\partial W_c}{\partial \mathbf{F}_a} + \sigma \cdot \mathbf{F}_a^{-T} \right) \cdot \dot{\mathbf{F}}_a + (\mathbf{F}_a^T \cdot \sigma \cdot \mathbf{F}_a^{-T} \cdot \mathbf{F}_g^{-T} + \mathbf{b}_g \cdot \mathbf{F}_g^{-T}) \cdot \dot{\mathbf{F}}_g \\ + \left[\beta_0 + \int_{-\infty}^t \kappa(t-\zeta, 0) \frac{\partial T_d}{\partial \zeta} d\zeta - \rho s \right] \dot{T} \\ + \left[- \int_{-\infty}^t \frac{\partial}{\partial t} \mathbf{A}(t-\zeta) : \frac{\partial \mathbf{F}_a}{\partial \zeta} d\zeta + \int_{-\infty}^t \frac{\partial}{\partial t} \beta(t-\zeta) \frac{\partial T_d}{\partial \zeta} d\zeta + \rho \dot{d} + -\frac{1}{T} \mathbf{q} \cdot \text{grad}(T) \right] \geq 0. \quad (24)$$

329 In the derivation, the symmetry of the stress and deformation gradient tensor is used. $\mathbf{A}_0 =$
 330 $\mathbf{A}|_{t=0}$ is the initial stress and it should be zero in this study. $\beta_0 = \beta|_{t=0}$ is the initial entropy. \dot{d}
 331 denotes the rate of energy dissipation. Let W as the deformation energy of per unit volume in
 332 the virtual configuration, so $W = J_a W_c$. This inequality should be valid for any $\dot{\mathbf{F}}_a$ and \dot{T} , that
 333 is,

$$334 \quad \sigma = J_a^{-1} \frac{\partial W}{\partial \mathbf{F}_a} \cdot \mathbf{F}_a^T, \quad (25)$$

$$335 \quad \rho s = \beta_0 + \kappa * dT_d, \quad (26)$$

336 where $*$ denotes the Stieltjes convolution symbol, $\int_{-\infty}^t \phi \frac{d\varphi}{d\zeta} d\zeta = \phi * d\varphi$. Also, the following
 337 inequality can be obtained

$$338 \quad (\mathbf{F}_a^T \cdot \boldsymbol{\sigma} \cdot \mathbf{F}_a^{-T} \cdot \mathbf{F}_g^{-T} + \mathbf{b}_g \cdot \mathbf{F}_g^{-T}) : \dot{\mathbf{F}}_g = (\mathbf{F}_a^T \cdot \boldsymbol{\sigma} \cdot \mathbf{F}_a^{-T} + \mathbf{b}_g) : \mathbf{L}_g \geq 0. \quad (27)$$

339 The fourth term of Eq. (24) can result in the dissipation inequality as in the
 340 thermoviscoelasticity (Christensen and Naghdi, 1967) and it will not be repeated here.

341 For illustration, we assume that \mathbf{L}_g has the form

$$342 \quad \mathbf{L}_g = \sum_i f_i(c_i - c_{i0}) (\mathbf{F}_a^T \cdot \boldsymbol{\sigma} \cdot \mathbf{F}_a^{-T} + \mathbf{b}_g). \quad (28)$$

343 One possible growth model can be obtained, which is a stress-related and nutrient-limited
 344 growth model, that is, the local nutrient concentration and residual stresses determine the tissue
 345 growth rate. where c_i is the concentration of the constituent i , $f_i(c_i)$ denotes a positive-definite
 346 scalar function describing the chemical kinetics, and c_{i0} is the nutrient threshold, below which
 347 the tissue reduced in size or dies due to lack of nutrient availability. $(\boldsymbol{\sigma} + \mathbf{b}_g)$ drives the tissue
 348 growth and it acts as the biomechanical driving force.

349 The inequality of Eq. (27) can be satisfied by Eq. (28). Thus Eq. (28) can be written as

$$350 \quad \dot{\mathbf{F}}_g \cdot \mathbf{F}_g^{-1} = \sum_i f_i(c_i - c_{i0}) (\mathbf{F}_a^T \cdot \boldsymbol{\sigma} \cdot \mathbf{F}_a^{-T} + \mathbf{b}_g), \quad (29)$$

351 which is the growth evolution law. Notably, the growth governing equations are similar to the
 352 elastic equations (Xue et al., 2016; Yin et al., 2019), but the stress distribution is related to the
 353 viscoelastic properties of tissues.

354 *2.3. Theoretical solution*

355 Many biological tissues have approximately spherical shapes, e.g., tumors and organoids,
 356 thus, the spherical model is often used for biological studies (Goriely, 2017). Additionally, the
 357 cells at the core may receive less oxygen and nutrients as the sphere grows larger, which leads
 358 to the slowed or arrested growth of the core (Walker et al., 2023a). The differential growth rate
 359 can also reflect important biological processes. Differential growth rates between the surface
 360 and core of spherical structures can lead to important morphogenetic events during tissue
 361 development (Eskandari and Kuhl, 2015). In this study, the symmetric growth, deformation,
 362 and instability of a spherical shell–core structure are considered as an example to illustrate the
 363 prominent features of viscoelastic effects. The shell has inner and outer radii R_i, R_o in the initial

364 configuration and grows into a sphere shell with inner and outer radii r_i, r_o in the current
 365 configuration, as shown in Fig. 4. The interface between the core and the shell is perfectly
 366 bonded. The spherical coordinates in the current configuration are (r, θ, φ) , and the normal
 367 bases are $(\mathbf{e}_r, \mathbf{e}_\theta, \mathbf{e}_\varphi)$. The corresponding coordinates in the initial configuration are (R, Θ, Φ) .
 368 Thus, the deformation gradient tensor is

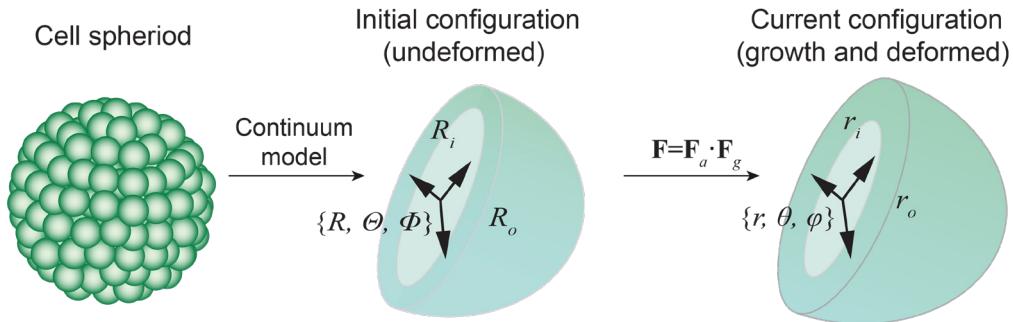
$$369 \quad \mathbf{F} = \text{diag}\left(\frac{\partial r}{\partial R}, \frac{r}{R}, \frac{r}{R}\right). \quad (30)$$

370 Assuming that in the initial stage of growth, the deformation preserves the spherical symmetry,
 371 that is,

$$372 \quad \mathbf{F}_g = \text{diag}(g_r, g_\theta, g_\theta), \quad (31)$$

373 where the condition $g_r = g_\theta$ corresponds to the isotropic growth, which means the dilation of
 374 original sphere. The mechanical deformation part of the deformation gradient is written as,

$$375 \quad \mathbf{F}_a = \text{diag}(\alpha_r, \alpha_\theta, \alpha_\theta). \quad (32)$$



376
 377 **Fig. 4.** The spherical shell–core model for a cellular spheroid with differential growth. The shell has the
 378 inner and outer radii R_i and R_o in the initial configuration, and it grows to a spherical shell r_i, r_o in the
 379 current configuration, respectively. If the core is non-growing, it has $R_i = r_i$. The spherical coordinates
 380 (R, Θ, Φ) and (r, θ, φ) are used.

381 From Eq. (1), one has $\alpha_r = (\partial r / \partial R) / g_r$ and $\alpha_\theta = (r/R) / g_\theta$. The approximation of
 382 volume incompressibility requires that $J_a = 1$ and $\alpha_r = \alpha_\theta^{-2}$. Then, the component of \mathbf{F} can be
 383 obtained as

$$384 \quad \frac{\partial r}{\partial R} = \frac{R^2}{r^2} g_r g_\theta^2. \quad (33)$$

385 By integration, the outer radius is

386
$$r^3 = r_i^3 + 3 \int_{R_i}^R g_r g_\theta^2 R^2 dR, \quad (34)$$

387 and the deformation gradient component can be given as

388
$$\alpha_\theta = \frac{\left(r_i^3 + 3 \int_{R_i}^R g_r g_\theta^2 R^2 dR\right)^{\frac{1}{3}}}{g_\theta R}. \quad (35)$$

389 Taking a time derivative for Eq. (34) and changing the integration variable, the radius
390 evolution equation can be obtained as follows

391
$$r^2 \dot{r} = \int_{R_i}^R \dot{g}_r g_\theta^2 R^2 dR + 2 \int_{R_i}^R \dot{g}_\theta g_\theta g_r R^2 dR = \int_{r_i}^r \frac{1}{g_r} \dot{g}_r r^2 dr + 2 \int_{r_i}^r \frac{1}{g_\theta} \dot{g}_\theta r^2 dr. \quad (36)$$

392 Using Eq. (29), the growth rates in the spherical coordinate system can be obtained as

393
$$\dot{g}_r = \sum_i f_i (c_i - c_{i0}) (\sigma_r + b_g) g_r,$$

394
$$\dot{g}_\theta = \sum_i f_i (c_i - c_{i0}) (\sigma_\theta + b_g) g_\theta. \quad (37)$$

395 To focus on the mechanical cues for tissue growth, we consider a spherical shell perfectly
396 bonded on the incompressible non-growing core. The case of isotropic and constant growth
397 ($g_r = g_\theta = g$) is considered (Erlich et al., 2019) as an example. For constant growth, the
398 growth rate is determined by the overall stress state. In this study, the growth equation is
399 simplified as

400
$$\dot{g} = f_g (c - c_0) [\text{tr}(\bar{\sigma}_i) + b_g] g, \quad (38)$$

401 where $\bar{\sigma}_i$ denotes the average of the principle stress components along the radial position,
402 $\text{tr}(\bar{\sigma}_i) = \bar{\sigma}_r + \bar{\sigma}_\theta + \bar{\sigma}_\phi$. c_0 denotes the critical nutrition density, and the function $f_g(c - c_0)$
403 describes the effect of nutrient density.

404 Because of the symmetry, there are only two non-independent stress components in the
405 spherical coordinates, that is, $[\sigma] = \text{diag}(\sigma_r, \sigma_\theta, \sigma_\theta)$. Referring to Eq. (10), the mechanical
406 equilibrium in the spherical coordinate is written as

407
$$\frac{\partial \sigma_r}{\partial r} + \frac{2}{r} (\sigma_r - \sigma_\theta) = 0. \quad (39)$$

408 For the incompressible viscoelastic model, W can be written in a form similar to the neo-
 409 Hookean material (Khajehsaeid et al., 2014; Narooei and Arman, 2018)

$$410 \quad W = \frac{1}{2} \int_{-\infty}^t G(t-\zeta) \frac{d(\alpha_r^2 + \alpha_\theta^2 + \alpha_\theta^2 - 3)}{d\zeta} d\zeta = \frac{1}{2} \int_{-\infty}^t G(t-\zeta) \frac{d(\alpha^{-4} + 2\alpha^2 - 3)}{d\zeta} d\zeta. \quad (40)$$

411 where $\alpha = \alpha_\theta$. The relation can be written in the Stieltjes convolution form, that is

$$412 \quad W = \frac{1}{2} G * d(\alpha^{-4} + 2\alpha^2 - 3). \quad (41)$$

413 where $*$ denotes the Stieltjes convolution symbol. The relaxation function $G(t)$ can be
 414 approximated by the Prony series as

$$415 \quad G(t) = G_\infty + \sum_{i=1}^n G_i \exp\left(\frac{-t}{\tau_i}\right), \quad (42)$$

416 where $\tau_i = \xi_i/G_i$ denotes the relaxation time. If we use a simplified viscoelastic model, as
 417 shown in Fig. 2c, which is the standard three-parameter model with relaxation time $\tau_g = \xi/G_1$,
 418 the relaxation function becomes

$$419 \quad G(t) = G_\infty + G_1 \exp\left(\frac{-t}{\tau_g}\right). \quad (43)$$

420 It has the initial modulus $G_0 = G_\infty + G_1$ at time $t = 0$. In the case of isotropic growth ($g_r =$
 421 $g_\theta = g$) and using the stress-free boundary condition $\sigma_r(R_o, t) = 0$, the stress components can
 422 be obtained from Eq. (39) and (25) as

$$423 \quad \sigma_r = \frac{1}{2} G * d(\alpha^{-4} + 4\alpha^{-1}) - \frac{1}{2} G * d(\alpha_o^{-4} + 4\alpha_o^{-1}),$$

$$424 \quad \sigma_\theta = \sigma_r + \frac{r}{2} \frac{\partial \sigma_r}{\partial r} = \sigma_r + G * d(\alpha^2 + \alpha^{-4}), \quad (44)$$

425 where

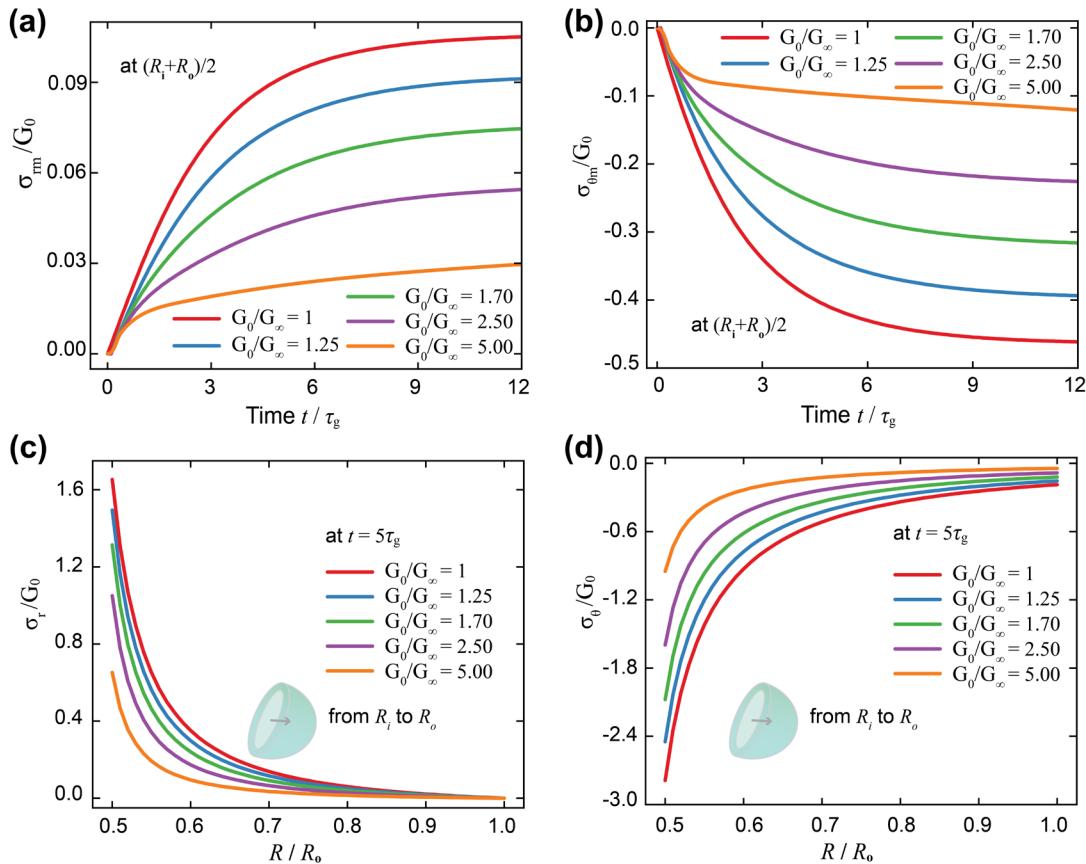
$$426 \quad \alpha_o = \left(1 - \frac{R_i^3}{R_o^3} + \frac{1}{g^3 R_o^3} \frac{R_i^3}{R_o^3}\right)^{\frac{1}{3}}. \quad (45)$$

427 The theoretical solution for a growing spherical shell–core structure has been obtained,
 428 capturing both its elastic and time-dependent deformation behavior. In the following sections,
 429 this model will be applied to specific case studies, focusing on the impact of viscoelasticity on
 430 tissue growth and morphological evolution.

431 3. Growth of a viscoelastic spherical tumor

432 In growing tumors, the mechanical stress and strain fields, the nutrient and chemical fields,
 433 and the growth rates are strongly coupled. The viscoelastic nature of tumors constitutes a
 434 pivotal biomechanical attribute that significantly influences tumorigenesis, progression, and
 435 metastatic potential (Streitberger et al., 2020; Walker et al., 2023b). Although solid tumors
 436 usually evolve irregular shapes as they grow, their initial shapes can be approximated to be
 437 spherical. A central necrosis may form in a solid tumor due to the diminished supply of oxygen
 438 and nutrients in the core region. As an illustrative case, therefore, the effects of viscoelasticity
 439 on tumor growth will be elucidated by using the spherical shell–core model in this section. This
 440 model is based on the simplified assumption that the core is incompressible and non-growing,
 441 while the outer surface is free to focus on viscoelastic effects.

442 3.1. Stress field induced by growth



444 **Fig. 5.** The stress evolution in a growing spherical shell–core tumor, with geometry $R_i/R_o = 0.5$ and an
 445 incompressible non-growing core, that is, the inner surface is fixed and the outer surface is free. A larger
 446 G_0/G_∞ indicates more obvious viscoelasticity and stress relaxation, and the difference $G_0 - G_\infty$ denotes the
 447 modulus that can be relaxed. All cases have the same initial modulus G_0 , and $G_0/G_\infty = 1$ represents the
 448 pure elastic case with modulus G_0 and no relaxation. (a, b) The stresses in the med-layer of the spherical

449 shell change over time for different viscoelastic properties. (c, d) The stresses along the shell thickness at
 450 $t = 5\tau_g$ for varying viscoelastic properties.

451 The differential growth of tissues inherently generates mechanical residual stresses, which
 452 evolve with time. The stresses, arising from the continuous cellular proliferation,
 453 differentiation, and extracellular matrix remodeling, significantly modulate the biomechanical
 454 environment and subsequently influence further growth. The stress accumulation rate is
 455 determined by the mechanical properties of the tissue. Fig. 5 illustrates the contrast of residual
 456 stresses induced during the processes of elastic and viscoelastic tumor growths. In the elastic
 457 tumor (with modulus G_0 and no relaxation, thus is written as $G_0/G_\infty = 1$), stress accumulation
 458 increases over time, whereas viscoelasticity facilitates stress relaxation (Fig. 5a-b). Tumors
 459 with higher viscoelastic relaxation (larger G_0/G_∞) exhibit slower stress accumulation. As the
 460 viscoelastic properties vary, there is a noticeable difference in the stress distribution along the
 461 shell thickness (Fig. 5c-d). Stress magnitudes decrease across the spherical shell as the
 462 viscoelastic relaxation increases (G_0/G_∞ becomes larger). This indicates that tumors with
 463 greater viscoelasticity exhibit more pronounced stress relaxation, thereby reducing the residual
 464 stress accumulation more effectively than less viscoelastic or purely elastic tumors. In practice,
 465 different tumors present various levels of stress relaxation or viscoelasticity, which may
 466 significantly influence their growth and development (Walker et al., 2023b).



468 **Fig. 6.** The sum of the three principal stresses in a growing spherical shell–core tumor, with geometry
 469 $R_i/R_o = 0.5$ and an incompressible non-growing core. (a) The variations of the mean principal stresses
 470 with time for different viscoelastic properties. (b) The sum of principal stresses versus modulus ratio at
 471 different times. All cases have the same initial modulus G_0 . A larger G_0/G_∞ corresponds to more obvious
 472 viscoelasticity and greater stress relaxation.

473 The growth equation in Eq. (38) is formulated in terms of the sum of three principal
 474 stresses. The accumulation of the total stress is faster in elastic tumors than that in viscoelastic

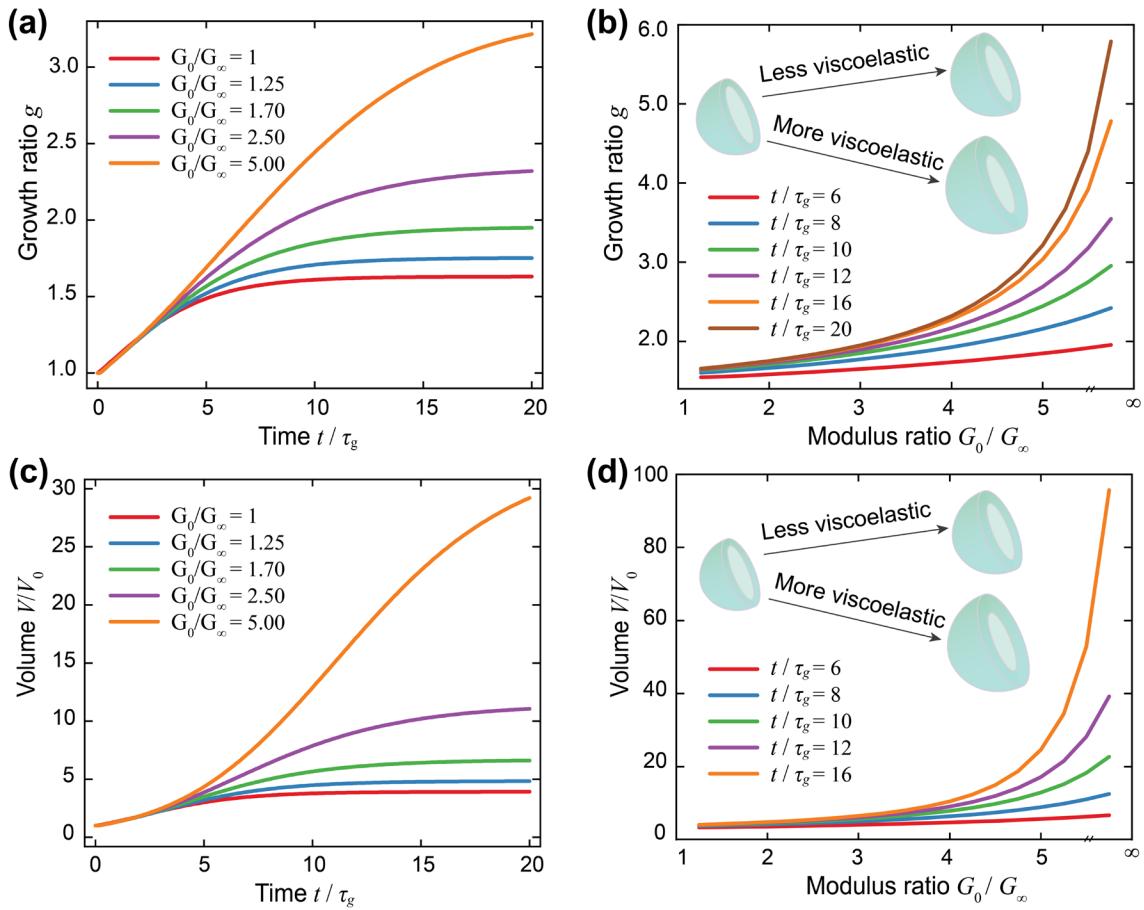
475 tumors (Fig. 6). Tumors with lower viscoelasticity (smaller G_0/G_∞) exhibit a higher rate of
476 stress accumulation, as indicated by the curves in Fig. 6a. The relation between the stress and
477 viscoelastic modulus ratio in Fig. 6b demonstrates that the stress accumulation decreases as the
478 viscoelasticity becomes more obvious at any given time. The elastic and viscoelastic properties
479 of tumors determine their capacity for stress management. Elastic tumors maintain higher stress
480 levels over time, whereas viscoelastic tumors experience lower stress levels due to substantial
481 stress relaxation. These findings suggest that viscoelasticity can modify the overall stress level,
482 which may be critical during tumor development. Furthermore, the overall stress state can
483 influence the growth process as described in Eq. (38).

484 *3.2. Growth ratio*

485 Viscoelasticity can significantly influence tumor growth by modulating the stress level,
486 which in turn affects the growth rate. Fig. 7 illustrates the effect of varying viscoelastic
487 properties on the growth ratio and volume, with sufficient nutrient availability. The growth
488 ratio refers to the relative increase in the tumor size. The growth process would stop where the
489 residual stress reaches the maximum value, as described by Eq. (38). For more viscoelastic
490 tumors (larger G_0/G_∞), the growth ratio and the tumor volume exhibit a more pronounced
491 increase with time (Fig. 7a and Fig. 7c). The relations between the growth ratio (or tumor
492 volume) and the modulus ratio can present the effect of viscoelasticity more intuitively (Fig.
493 7b and Fig. 7d). The growth ratio and volume are greater for more viscoelastic tumors at any
494 given time. The model predicts that the viscoelastic properties are conducive to the growth
495 because of the stress relaxation, which is consistent with the results that residual stresses can
496 inhibit tumor growth (Goriely, 2017; Xue et al., 2016). In addition, the correlation between
497 tumor viscoelasticity and growth rate is in accordance with the reported active particle
498 simulations (Fig. S2), as well as with experimental observations that more fluid glioblastomas
499 grow faster than the more solid meningiomas in the brain (Streitberger et al., 2020).

500 During the processes of tissue development, wound healing, and lesion formation, the
501 viscoelastic properties of tissues can undergo alteration through cell proliferation,
502 differentiation, and remodeling of ECM (Fig. 2b). This mechanism significantly impacts the
503 subsequent tissue growth. Our model can demonstrate how the changes in the viscoelastic
504 properties affect the growth behavior. For spherical shell–core tumor growth, if the
505 viscoelasticity of a tumor increases as it grows (G_0/G_∞ becomes larger), the growth of the
506 tumor is prolonged and the steady-state volume increases. (Fig. 8a, the green bold curve). In

507 tumors with higher viscoelasticity, the stresses can be relaxed more effectively, leading to
 508 sustained growth compared to those with lower viscoelasticity. Conversely, the tumors with
 509 increasing elasticity (G_0/G_∞ becomes smaller) achieve smaller steady-state volumes and cease
 510 growing earlier (Fig. 8a, the brown bold curve). These results indicate that the variation in the
 511 tissue viscoelasticity during the growth process may establish a feedback loop that further
 512 influences tumor progression (Sauer et al., 2023).

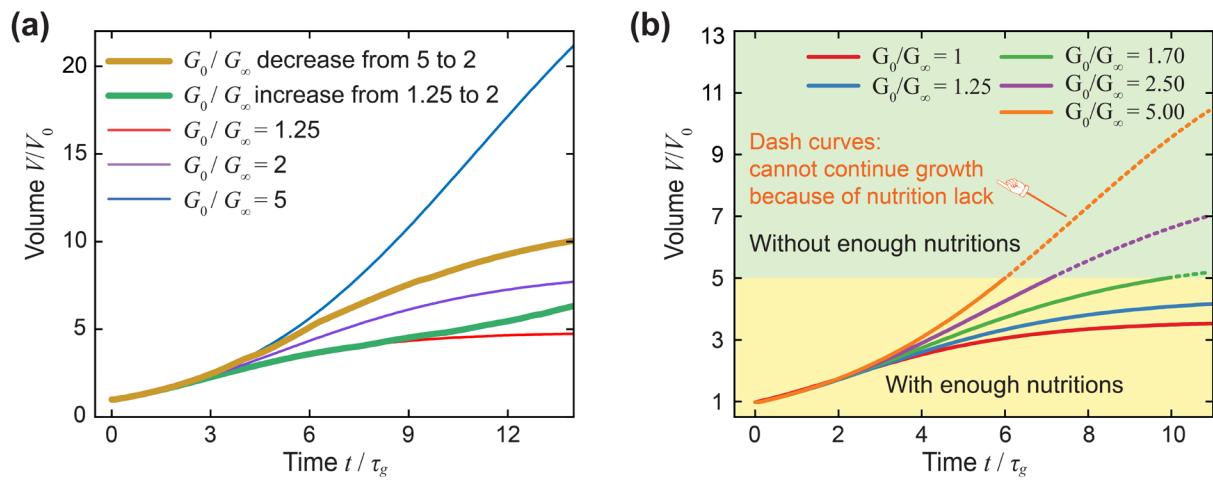


513

514 **Fig. 7.** The growth ratio and volume of a spherical shell–core tumor, with geometry $R_i/R_o = 0.5$ and an
 515 incompressible non-growing core. (a) The variations of the growth ratio with time for different viscoelastic
 516 properties. (b) The growth ratio versus the modulus ratio at different times. (c) The tumor volume over time
 517 for different viscoelastic properties. (d) The tumor volume versus the modulus ratio at different times.

518 Mechanical factors, including the stresses and moduli, play a significant role in tissue
 519 growth. Additionally, tissue growth is influenced by the availability of nutrients (Soleimani et
 520 al., 2020; Xue et al., 2016). Eq. (38) describes mechanobiological growth, which is determined
 521 by both the stress state and nutrient density. The “nutrient density” includes the availability of
 522 essential nutrients, including glucose, amino acids, oxygen, and growth factors. We employ a
 523 total nutrient density function to represent these biochemical factors. The interaction between

mechanical stress and nutrient density in growth is illustrated in Fig. 8b. In this discussion, the nutrient is set and will be fully depleted when $V / V_0 = 5$. This setting primarily serves to explore the interplay between mechanical signals and chemical cues during tissue growth. As the nutrients are consumed, the growth rate slows down, but the higher viscoelasticity allows a faster growth rate due to the less accumulation of residual stress. Due to this coupling mechanism, the tumor growth would stop once nutrients are exhausted, even if the critical residual stress has not yet been reached. In addition, the effect of nutrient consumption on growth rate is illustrated by comparison with the sufficient nutrient availability condition (Fig. S3). Consequently, both the residual stress and nutrient density modulate the growth of viscoelastic tumors.



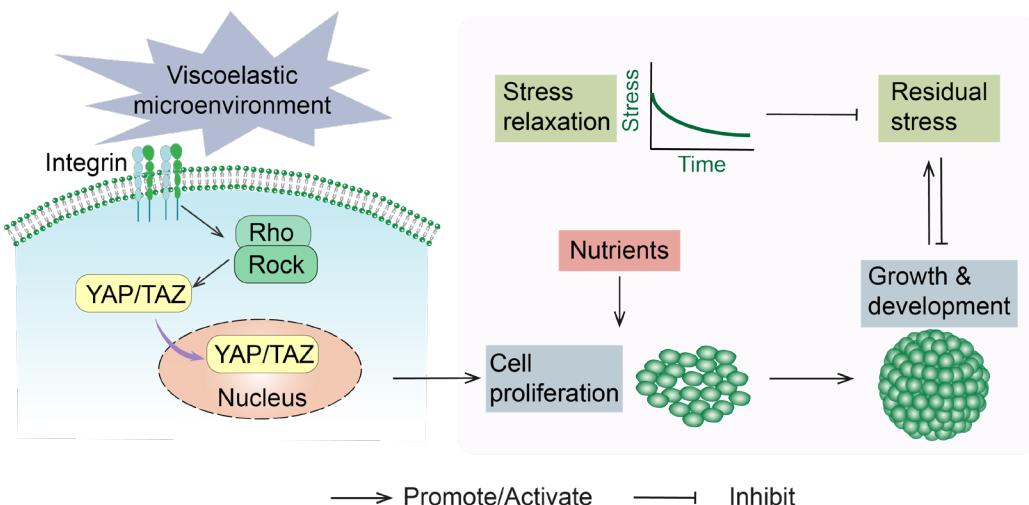
534

535 **Fig. 8.** Influence of viscoelasticity and nutrients on mechanobiological growth. A spherical shell–core
 536 structure with geometry $R_i/R_o = 0.5$ and an incompressible non-growing core. (a) Changes in
 537 viscoelasticity during growth, resulting in different trends of growth volume. (b) The growth volume of the
 538 spherical shell over time, as determined by the residual stress and nutrient availability. In this analysis, the
 539 total nutrient supply is constant and the remaining nutrient density is inversely proportional to the growth
 540 volume.

541 3.3. *Mechano-chemo-biological mechanisms of viscoelastic growth*

542 Tumor growth is regulated by a complex interplay between mechanical properties and
 543 biochemical factors (Sun et al., 2022). Both mechanical stress and viscoelasticity influence
 544 cellular behavior through mechano-transduction pathways, and nutrient availability modulates
 545 metabolic activities that are essential for cell proliferation and ECM production. The
 546 synergistic effects of these factors are crucial for the development and morphogenesis of tissues.
 547 The multiscale mechano-chemo-biological mechanism that modulates tissue growth is
 548 schematized in Fig. 9. When the cells experience changes in the viscoelastic environment, their

549 mechano-transduction pathways are activated (Fan et al., 2024). These pathways convert
 550 mechanical signals into biological signals, which may regulate gene expression and cell
 551 proliferation. Integrins, transmembrane proteins, are responsible for sensing mechanical
 552 signals. The mechanical signal activates the Rho/ROCK signaling pathway, which can cause
 553 the dynamic evolution of the cytoskeleton. Subsequently, the transcription factor co-activators
 554 YAP and transcriptional coactivator with PDZ-binding motif (TAZ) are translocated to the
 555 nucleus to induce gene expression (Dupont et al., 2011), thereby promoting cell proliferation
 556 and tissue growth. The growth of tissue produces residual stresses, which inhibit further growth.
 557 While viscoelastic properties, due to the stress relaxation, can slow down the accumulation of
 558 residual stress, thereby facilitating sustained growth. The introduction of these integrated
 559 mechano-chemo-biological mechanisms deepens our understanding of tissue growth at
 560 multiple length scales, from the molecular, cellular to the tissue scale. This may inspire
 561 strategies to adjust various physiological factors for specific therapeutic techniques, which may
 562 also be valuable in the fields of tissue engineering and regenerative medicine.



564 **Fig. 9.** Multiscale mechano-chemo-biological mechanisms of viscoelastic tissue growth. Integrins sense
 565 viscoelasticity, and then influence cell proliferation, which is also affected by nutrient availability. The
 566 growth produces residual stresses that inhibit further growth, but the stress will be partly relaxed due to
 567 viscoelasticity.

568 4. Morphological evolution of a growing viscoelastic organoid

569 Morphogenesis is a key issue in the development of tissues and organs (Yu and Li, 2024).
 570 Residual stresses accumulate during tissue growth, and mechanobiological instability may
 571 occur when a tissue experiences compressive stresses that exceed a certain threshold, leading
 572 to the formation of various surface patterns. On the basis of the above-formulated theory, we

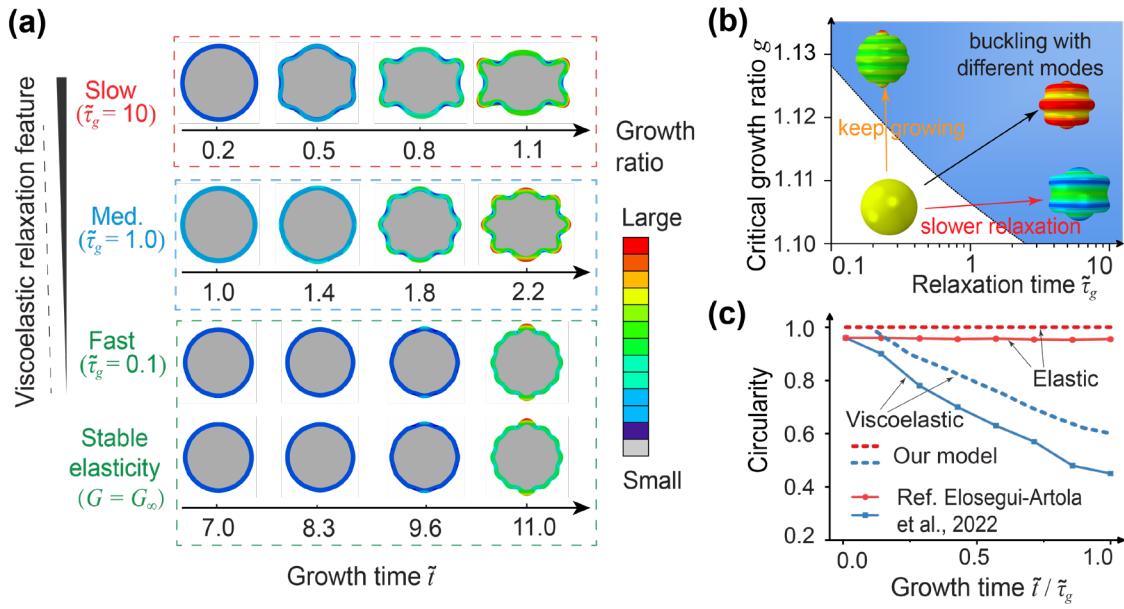
573 now investigate how viscoelasticity regulates surface instability and the postbuckling
574 morphological evolution of soft tissues.

575 For illustration, we employ a growing viscoelastic spherical organoid model to elucidate
576 the instabilities arising from tissue growth, with particular attention to the effects of
577 viscoelasticity. For simplicity, the core of the organoid is assumed to be incompressible and
578 non-growing, reflecting the nutrient and oxygen gradients established due to diffusion
579 limitations in the central regions. The peripheral region, conversely, exhibits an enhanced rate
580 of cell proliferation and tissue expansion (Karzbrun et al., 2018). This peripheral growth
581 significantly contributes to the surface tension, potentially leading to buckling at the periphery
582 (Riccobelli and Bevilacqua, 2020). The buckling and postbuckling behaviors are simulated
583 using the finite element method (Abaqus). In the simulation, the four-node axisymmetric
584 elements (CAX4R) are used to discretize the axisymmetric spherical shell–core structure. In
585 the calculations, the mechanical deformation tensor \mathbf{F}_a can be obtained, and then the stresses
586 are determined from \mathbf{F}_a and the viscoelastic modulus of Eq. (43). Finally, the growth state
587 variable is calculated according to Eq. (38), and updated with $g|_{t+\Delta t} = g|_t + \dot{g}|_t \Delta t$.

588 *4.1. Organoids with various viscoelastic properties*

589 We now examine the effects of viscoelastic relaxation on the surface instability of a
590 homogeneous spherical organoid during growth. Fig. 10a shows that, for the same long-term
591 modulus G_∞ , viscoelastic growth enters the buckling instability more quickly than purely
592 elastic growth, which is consistent with experimental observations (Elosegui-Artola et al.,
593 2022). It should be noted that the elastic case studied in this section corresponds to the long-
594 term modulus G_∞ , and the viscoelastic cases have the same long-term modulus. The
595 morphological evolution of spherical organoids varies with different relaxation times. The
596 occurrence of buckling and the corresponding buckling mode depend on the viscoelastic
597 relaxation rate, even if the modulus ratio remains constant ($G_0/G_\infty = 4$, Fig. 10a). In the case
598 of slow relaxation, residual stresses accumulate rapidly over time, leading to earlier buckling
599 and larger deformation. For medium relaxation, buckling occurs at a moderate growth stage,
600 with a higher buckling mode compared to the case of slow relaxation. The buckling of the fast
601 relaxation case occurs much later, and the patterns resemble those of the elastic case (with the
602 long-term modulus G_∞), as the fast relaxation allows the residual stresses to dissipate quickly,
603 making the relaxation modulus G_1 almost irrelevant. The phase diagram (Fig. 10b) indicates
604 that the relaxation rate determines the critical growth ratio (the maximum growth ratio before

605 buckling, which is extracted as the mean growth ratio of the last pre-buckling simulation step
 606 and the subsequent buckling step.) and the different buckling modes. Organoids with a slower
 607 relaxation rate buckle at lower growth ratios because of their faster stress accumulation. This
 608 relation highlights the importance of viscoelastic relaxation in determining the stability of
 609 growing organoids. Fig. 10c compares the results of our model with previous research, showing
 610 that viscoelasticity is associated with a more expeditious morphological evolution, i.e., a faster
 611 reduction in circularity compared to elasticity. Circularity, together with morphology and
 612 buckling mode, characterizes the morphological evolution process. For the reference results,
 613 the circularity is not equal to one because the initial state of their growing spherical tissue is
 614 not a perfect sphere. Besides, the thickness ratio and the modulus ratio between the spherical
 615 shell and core materials also affect the buckling behavior, which has been discussed in previous
 616 literatures (Holland et al., 2017; Huang et al., 2023; Li et al., 2011). This aspect will not be
 617 explored in the present study, which instead concentrates on the effect of viscoelasticity.

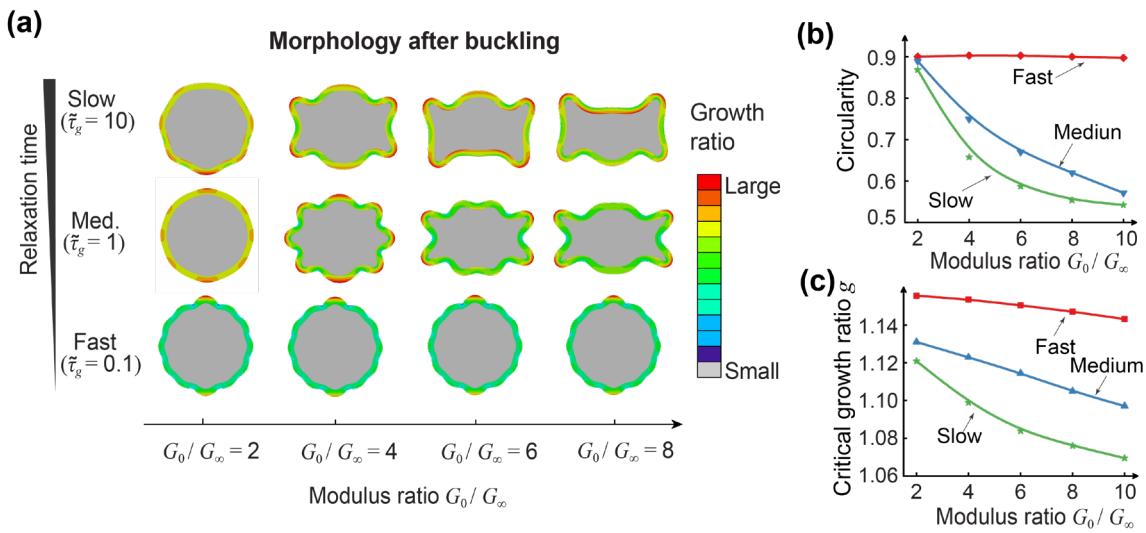


618
 619 **Fig. 10.** Instability of the homogeneous viscoelastic spherical shell–core organoids, with $G_0/G_\infty = 4$,
 620 geometry $R_i/R_o = 0.9$, and an incompressible non-growing core whose modulus is G_{core} , and $G_\infty/G_{\text{core}} =$
 621 3. (a) The morphology changes of spherical shell–core profile over time, with different relaxation times
 622 resulting in different buckling modes. (b) Phase diagram of the critical buckling growth ratio versus
 623 relaxation time, with the same long-term modulus G_∞ . (c) Comparison with the results in other studies, and
 624 our results are calculated with viscoelastic parameters $\tilde{\tau}_g = 5$, $G_0/G_\infty = 4$. The circularity in our results is
 625 calculated by $4\pi(S_{\text{area}}) / (l_{\text{circumference}})^2$, where S_{area} is the area of the middle section, and $l_{\text{circumference}}$
 626 is its circumference. The reference results are from (Elosegui-Artola et al., 2022), and the growth time is
 627 normalized. The relaxation time $\tilde{\tau}_g$ and growth time \tilde{t} are made dimensionless by the characteristic growth
 628 time $1 / (f_g^0 G_\infty)$ and the same below, where f_g^0 denotes the initial nutrient effect as in Eq. (38).

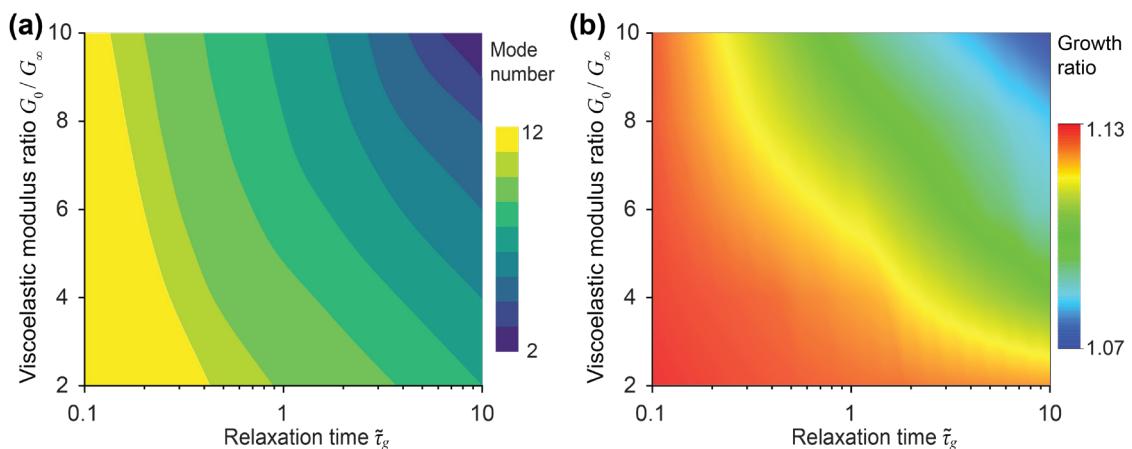
629 The viscoelastic properties of organoids can exert an influence on their morphological
630 evolution after buckling. Simulation results (Fig. 11) show the impact of viscoelastic properties
631 (the relaxation modulus ratio and relaxation time) on the morphology of a growing spherical
632 organoid. Fig. 11a illustrates the morphology of the middle section of the spherical shell–core
633 after buckling, revealing that slower relaxation times lead to more pronounced deformation
634 compared to faster relaxation times. In the slower relaxation time cases, different modulus
635 ratios can lead to different buckling patterns and modes. When the relaxation time is very fast,
636 the initial modulus G_0 will quickly relax to the long-term modulus G_∞ , making the increase in
637 the initial modulus (also the modulus ratio G_0/G_∞ in this discussion) has little effect on the
638 overall effective modulus. Circularity, a measure of how closely a shape resembles a perfect
639 circle, is used to measure the rate of morphological evolution. Fig. 11b illustrates the circularity
640 of the middle section of the shell–core for the same evolution time after buckling. The
641 circularity exhibits different trends depending on the relaxation time and modulus. The slow
642 relaxation case corresponds to a steeper curve, indicating a faster rate of evolution. In contrast,
643 the evolution rate caused by the modulus ratio changes is almost negligible in the fast relaxation
644 case. Additionally, the critical growth ratio is also related to the viscoelastic properties (Fig.
645 11c). A lower critical growth ratio indicates that buckling occurs at a smaller growth volume.
646 This figure indicates that a higher modulus ratio and slower relaxation rate lead to a smaller
647 critical growth ratio, suggesting that only a smaller growth is needed to induce buckling in
648 stiffer tissues.

649 The relaxation modulus, along with the relaxation time, determines the effective modulus
650 perceived during growth. These properties can influence the buckling behavior of the organoid
651 and the resulting morphological changes. As illustrated in Fig. 12, the results show how
652 viscoelastic properties affect the buckling mode number and critical growth ratio. Different
653 relaxation times and viscoelastic modulus ratios lead to different effective moduli (can be
654 calculated from Eq. (43)). A larger modulus ratio and slower relaxation time lead to fewer
655 mode numbers (Fig. 12a) and smaller critical growth ratios (Fig. 12b), because this condition
656 corresponds to a larger effective modulus and slower stress relaxation, which consequently
657 results in a more rapid accumulation of residual stress. Additionally, higher stability (a larger
658 volume before buckling, corresponding to larger critical growth ratios in Fig. 12b) corresponds
659 to more complex buckling patterns (higher mode numbers). Conversely, lower stability
660 (smaller critical growth ratios) is associated with simpler buckling patterns (lower mode
661 numbers). These relations suggest that the buckling behavior and stability of growing organoids

662 can be regulated by adjusting the viscoelastic modulus ratio and relaxation time. This
 663 understanding may help to develop more effective tissue engineering strategies for the design
 664 of artificial tissues and the treatment of diseases characterized by abnormal tissue mechanics.
 665 It is also possible that the regulation of viscoelasticity may control the growth and
 666 morphogenesis of tissue during natural development, but this hypothesis requires further
 667 experimental verification.



668
 669 **Fig. 11.** Morphological evolution of the homogeneous viscoelastic spherical organoids for the same time
 670 after buckling (after unit characteristic growth time), with an incompressible non-growing core, the shell
 671 geometry $R_i/R_o = 0.9$, and the same long-term modulus G_∞ . (a) Morphology of the spherical shell–core
 672 profile for different instantaneous moduli G_0 at different relaxation times. A slower relaxation time results
 673 in a larger effective modulus. (b) Circularity of the middle section of the spherical shell–core for different
 674 relaxation times over the modulus ratio G_0/G_∞ , with the same evolution time after buckling. (c) Critical
 675 growth ratios (when buckling occurs) over the modulus ratio G_0/G_∞ for different relaxation times. The
 676 third configuration in the first row in (a) is symmetrical to the fourth because the rotationally symmetric
 677 buckling pattern indicates the same buckling mode for symmetrical geometry. In (b) and (c), the solid line
 678 corresponds to a B-spline curve, which is a smooth interpolation of the simulated data points.



679

680 **Fig. 12.** Phase diagram of the initial buckling mode number and critical growth ratio, with $R_i/R_o = 0.9$,
681 and an incompressible non-growing core. (a) Distribution of mode numbers as a function of viscoelastic
682 modulus and relaxation time. (b) Distribution of critical growth ratios (when buckling occurs) as a function
683 of viscoelastic modulus and relaxation time.

684 *4.2. Viscoelasticity changes during development*

685 During the process of growth, development, and pathological changes, tissues frequently
686 undergo changes in their material properties. Changes in viscoelasticity often play a significant
687 role and can serve as important physiological and pathological indicators (Cox, 2021; Fan et
688 al., 2024; Hiscox et al., 2021). This discussion explores the impact of the transition between
689 fast and slow relaxation times on morphology evolution. Fig. 13 displays how changes in
690 relaxation time influence the morphological evolution of a growing organoid spheroid. The
691 morphology of the spherical shell evolves as the relaxation time changes from fast to slow (Fig.
692 13a) or slow to fast (Fig. 13c). As the relaxation slows down from a very fast rate, the resulting
693 morphology (the first row of Fig. 13a) differs significantly from the cases with constant
694 relaxation time (the second row of Fig. 13a). The evolution process is accelerated when the
695 relaxation time is slowed, as evidenced by the change of the circularity trends (Fig. 13b). The
696 rate of change in relaxation time (Fast-to-slow-1 vs Fast-to-slow-2 in Fig. 13b) also influences
697 the morphological evolution path and its final state. A faster rate of change results in a faster
698 evolution process. When the relaxation time becomes faster from a slow state, the
699 morphological evolution slows down (the first row of Fig. 13c), and the buckling mode
700 changes during the evolution process. This leads to the nonmonotonic reduction of the
701 circularity curve in Fig. 13d. These differences are driven by variations in the accumulation
702 and dissipation of residual stresses within the tissue. As the viscoelastic properties undergo a
703 transition, the stress accumulation and distribution adjust, leading to different deformation
704 patterns and evolution rates. These results establish a clear link between the dynamic change
705 in viscoelasticity during the development and morphological evolution of organoids. The rate
706 and direction of viscoelasticity changes significantly influence the stability and morphological
707 evolution. This viscoelastic effect on morphological evolution can also be extracted through
708 some experimental observations (Fig. S4). Our findings contribute to a deeper understanding
709 of mechanobiology and offer promising avenues for developing innovative strategies to
710 manipulate tissue growth and address various pathological conditions. For example, adjustable
711 viscoelasticity of biomaterials used in tissue scaffolds may have the potential to enhance their
712 performance in promoting desired tissue growth and integration. In addition, the specific
713 viscoelastic parameters in the theoretical and computational models should be determined by

further series of experimental tests, and then the theoretical and experimental results can be quantitatively compared.

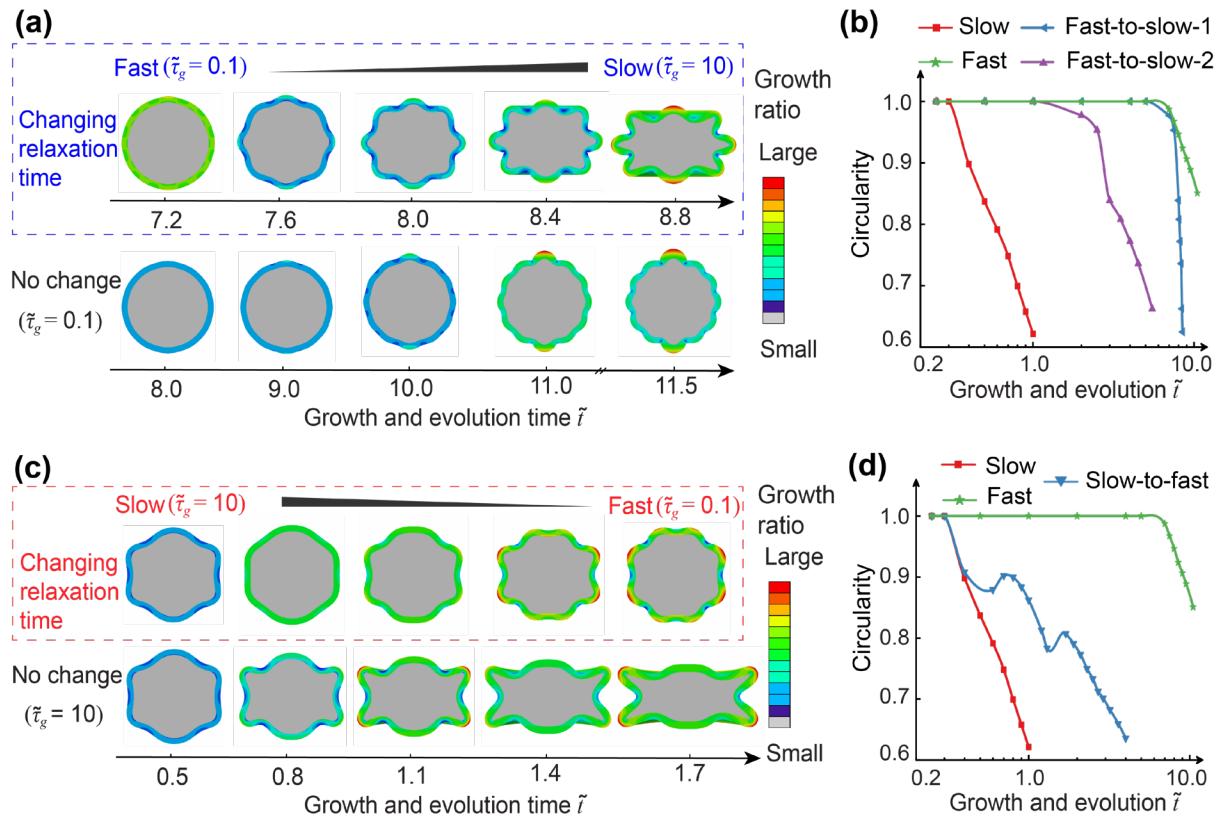


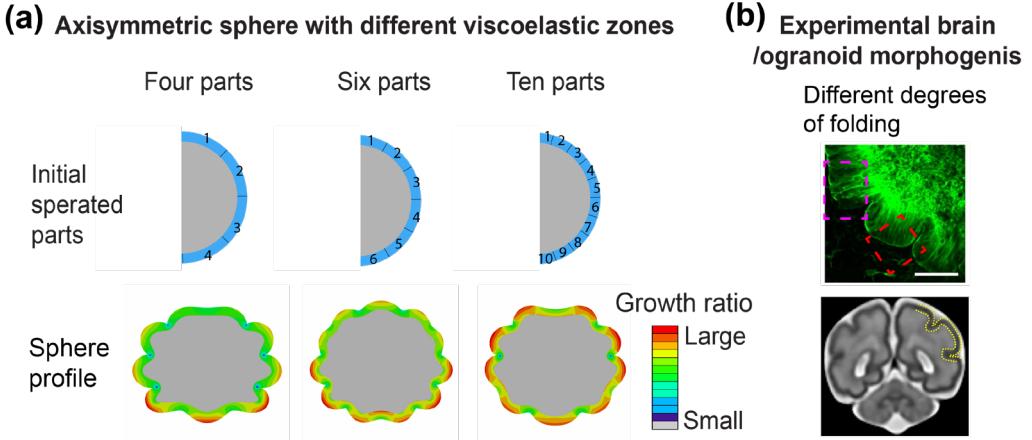
Fig. 13. Morphological evolution of the spherical shell whose viscoelasticity changes during the growth, with $G_0/G_\infty = 4$, $R_i/R_o = 0.9$, and an incompressible non-growing core. (a) Morphology of the middle section over time as the relaxation time changes from fast to slow. (b) The circularity of the middle section for different situations: constant viscoelasticity (Slow and Fast) and relaxation time changing from fast to slow at different rates (Fast-to-slow-1 and Fast-to-slow-2, and Fast-to-slow-2 corresponds to faster changing rate). (c) Morphology of the middle section over time as the relaxation time changes from slow to fast. (d) Circularity of the middle section for different situations: constant viscoelasticity (Slow and Fast) and relaxation time changes from slow to fast (Slow-to-fast).

4.3. Different viscoelastic properties in different regions

Tissues can exhibit different viscoelastic properties across different regions, and these spatial variations can significantly influence their morphological development (Hiscox et al., 2020; Streitberger et al., 2020). Fig. 14a introduces the spatially varying viscoelastic properties within an organoid spheroid and investigates their effects on morphological evolution. The spherical shell model is divided into distinct viscoelastic zones, and each zone exhibits different viscoelastic moduli and relaxation times. In this study, three different cases are considered, where organoids are divided into four, six and ten distinct parts. As observed, the buckling

733 morphology of the spherical shell shows spatial differences, including the degree of folding
734 and buckling mode number. When the tissue has different viscoelastic properties in different
735 zones, it may grow in various patterns, which might be significant for its function. Our model
736 is capable of simulating how different viscoelastic properties in various regions can modulate
737 tissue folding patterns. This simple model can be further designed to simulate the
738 heterogeneous nature of biological tissues, such as the brain organoid, which exhibit visible
739 differences in folding patterns due to variations in mechanical properties (Fig. 14b). The
740 viscoelastic nature of brain tissue is essential for the formation of cortical folds during
741 development, and it can influence the patterns of gyri and sulci that emerge as the brain grows
742 (Garcia et al., 2018). The spatiotemporal variation in brain viscoelasticity during development
743 is thought to affect neural maturation in different brain regions. This variation contributes to
744 the distinct developmental trajectories of various brain structures, and the brain tissue generally
745 stiffens with maturation, with different regions exhibiting varying degrees of change in their
746 viscoelastic properties (Karzbrun et al., 2018). Our mechanobiological model demonstrates
747 that variations in viscoelastic properties across the tissue can significantly influence its overall
748 morphology. These findings underscore the importance of understanding how regional
749 differences in mechanical properties contribute to the structural and functional diversity of
750 tissues.

751 The influence of viscoelasticity on morphological evolution can be analyzed in terms of
752 stress accumulation and relaxation dynamics. A region with a slower relaxation rate tends to
753 accumulate residual stress more rapidly because it has less capacity for stress relaxation. This
754 rapid accumulation of stress may not provide sufficient time for the stress to be distributed
755 throughout the tissue, while the adjacent region may have a faster stress relaxation rate. These
756 differences could lead to stress concentrations in certain regions and more abrupt and varied
757 buckling patterns. Further research is needed to establish a clearer relation between specific
758 folding patterns and viscoelastic properties. This could involve collecting additional
759 experimental data or developing more sophisticated computational models that incorporate a
760 wider range of biological factors.



761

762 **Fig. 14.** Morphological evolution of the spherical shell with different viscoelastic parts, with geometry
 763 $R_i/R_o = 0.9$, and an incompressible non-growing core. (a) Schematic diagram of spherical shells with
 764 different viscoelastic parts and the finite element simulation of the morphological evolution. All parts have
 765 the same modulus, i.e., $G_0/G_\infty = 2$, but different relaxation times. The relaxation times for the four parts
 766 are $\tilde{\tau}=0.1, 0.3, 0.4, 0.6$, for the six parts are $\tilde{\tau}=0.1, 0.3, 0.4, 0.6, 0.85, 1.2$, and for the ten parts are $\tilde{\tau}=0.1,$
 767 $1.5, 0.2, 1.6, 0.1, 1.2, 0.6, 3.0, 0.1, 0.3$. (b) Experimental results of the brain or organoid, showing different
 768 degrees of folding in different regions, adapted from (Karzbrun et al., 2018) and (Hiscox et al., 2020) .

769

5. Conclusions

770 In this paper, we have formulated a mechanobiological model to investigate the influences
 771 of viscoelastic properties of soft biological tissues. It provides a theoretical framework for
 772 studying the viscoelastic effects on the growth and morphogenesis of soft tissues. Using a
 773 spherical shell–core tumor model, it is found that tumors with the same initial modulus but
 774 higher viscoelasticity exhibit slower residual stress accumulation, leading to increased growth
 775 rates. In addition, nutrient availability also modulates the growth process, with reduced nutrient
 776 concentrations leading to decelerated growth over time. The finite element method is used to
 777 investigate how viscoelastic properties influence the stability and morphological evolution of
 778 growing organoids. The results indicate that for organoids with the same long-term modulus
 779 (storage modulus, G_∞), those with higher viscoelasticity enter buckling earlier, in consistency
 780 with relevant experimental results (Elosegui-Artola et al., 2022). The relaxation modulus and
 781 time determine the buckling mode and subsequent deformation. Furthermore, the variations of
 782 viscoelasticity significantly affect growth stability and overall morphology, with changes in
 783 viscoelastic properties altering the speed of morphological evolution and potentially shifting
 784 the buckling mode. Additionally, organoids with region-specific viscoelastic properties exhibit
 785 distinct buckling patterns, providing insight into the diverse morphologies observed during
 786 organ development.

787 By bridging the gap between experimental observations and theoretical modeling, the
788 present theory may help understand the morpho-mechanics of soft tissues (e.g., brains, tumors,
789 and organs-on-a-chip), with potential implications for tissue engineering and disease treatment
790 strategies. Although our model has incorporated some key factors of elasticity and
791 viscoelasticity, the precise functional relation between viscoelastic properties and these factors
792 needs to be elucidated through quantitative series experiments in the future. Besides, there are
793 still many other important mechanisms that may influence the morphological evolution of
794 tissues, such as specific genes or long-term biochemical signaling.

795 **Author contribution**

796 **Z. Lin:** Writing – review & editing, Writing – original draft, Validation, Software,
797 Methodology, Coding, Investigation, Conceptualization. **W. Huang:** Writing-review & editing,
798 Methodology, Coding, Investigation. **S. Li:** Writing-review & editing, Validation. **M. Wang:**
799 Writing-review & editing, Coding. **J. Bai:** Writing-review & editing, Software. **X. Chen:**
800 Writing-review & editing, Software. **X.-Q. Feng:** Writing-review & editing, Conceptualization,
801 Supervision, Project administration, Funding acquisition.

802 **Declaration of competing interest**

803 The authors declare that they have no known competing financial interests or personal
804 relationships that could have appeared to influence the work reported in this paper.

805 **Acknowledgments**

806 Supports from the National Natural Science Foundation of China (Grant Nos. 12032014
807 and T2488101) and the Postdoctoral Fellowship Program of CPSF under Grant Number
808 GZC20231309 are acknowledged.

809 **References**

810 Ambrosi, D., Ben Amar, M., Cyron, C.J., DeSimone, A., Goriely, A., Humphrey, J.D., Kuhl, E., 2019.
811 Growth and remodelling of living tissues: perspectives, challenges and opportunities. *Journal of the
812 Royal Society Interface* 16, 20190233.

813 Ben Amar, M., Goriely, A., 2005. Growth and instability in elastic tissues. *Journal of the Mechanics and
814 Physics of Solids* 53, 2284–2319.

815 Bera, K., Kiepas, A., Godet, I., Li, Y., Mehta, P., Ifemembi, B., Paul, C.D., Sen, A., Serra, S.A., Stoletov,
816 K., Tao, J., Shatkin, G., Lee, S.J., Zhang, Y., Boen, A., Mistriotis, P., Gilkes, D.M., Lewis, J.D., Fan,

817 C.-M., Feinberg, A.P., Valverde, M.A., Sun, S.X., Konstantopoulos, K., 2022. Extracellular fluid
818 viscosity enhances cell migration and cancer dissemination. *Nature* 611, 365–373.

819 Buskohl, P.R., Butcher, J.T., Jenkins, J.T., 2014. The influence of external free energy and homeostasis on
820 growth and shape change. *Journal of the Mechanics and Physics of Solids* 64, 338–350.

821 Cambria, E., Coughlin, M.F., Floryan, M.A., Offeddu, G.S., Shelton, S.E., Kamm, R.D., 2024. Linking cell
822 mechanical memory and cancer metastasis. *Nat Rev Cancer* 24, 216–228.

823 Chang, Z., Zhang, L., Hang, J.-T., Liu, W., Xu, G.-K., 2023. Viscoelastic Multiscale Mechanical Indexes
824 for Assessing Liver Fibrosis and Treatment Outcomes. *Nano Letters* 23, 9618–9625.

825 Chaudhuri, O., Cooper-White, J., Janmey, P.A., Mooney, D.J., Shenoy, V.B., 2020. Effects of extracellular
826 matrix viscoelasticity on cellular behaviour. *Nature* 584, 535–546.

827 Chaudhuri, O., Gu, L., Klumpers, D., Darnell, M., Bencherif, S.A., Weaver, J.C., Huebsch, N., Lee, H.-P.,
828 Lippens, E., Duda, G.N., Mooney, D.J., 2016. Hydrogels with tunable stress relaxation regulate stem
829 cell fate and activity. *Nat. Mater.* 15, 326–334.

830 Christensen, R.M., Naghdi, P.M., 1967. Linear non-isothermal viscoelastic solids. *Acta Mechanica* 3, 1–12.

831 Ciarletta, P., Ambrosi, D., Maugin, G.A., 2012. Mass transport in morphogenetic processes: A second
832 gradient theory for volumetric growth and material remodeling. *Journal of the Mechanics and Physics
833 of Solids* 60, 432–450.

834 Clément, R., Dehapiot, B., Collinet, C., Lecuit, T., Lenne, P.-F., 2017. Viscoelastic Dissipation Stabilizes
835 Cell Shape Changes during Tissue Morphogenesis. *Current biology : CB* 27, 3132-3142.e4.

836 Cox, T.R., 2021. The matrix in cancer. *Nat Rev Cancer* 21, 217–238.

837 DiCarlo, A., Quiliggotti, S., 2002. Growth and balance. *Mechanics Research Communications* 29, 449–456.

838 Ding, K., Lin, Z., Bie, Y., Wei, Y., 2024. The strain gradient viscoelasticity full field solutions for Mode-I
839 and Mode-II crack problems. *Engineering Fracture Mechanics* 301, 110016.

840 Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J.,
841 Forcato, M., Bicciato, S., Elvassore, N., Piccolo, S., 2011. Role of YAP/TAZ in mechanotransduction.
842 *Nature* 474, 179–183.

843 Elosegui-Artola, A., Gupta, A., Najibi, A.J., Seo, B.R., Garry, R., Tringides, C.M., Lázaro, I. de, Darnell,
844 M., Gu, W., Zhou, Q., Weitz, D.A., Mahadevan, L., Mooney, D.J., 2022. Matrix viscoelasticity controls
845 spatiotemporal tissue organization. *Nature materials* 22, 117–127.

846 Erlich, A., Moulton, D.E., Goriely, A., 2019. Are Homeostatic States Stable? Dynamical Stability in
847 Morphoelasticity. *Bull. Math. Biol.* 81, 3219–3244.

848 Eskandari, M., Kuhl, E., 2015. Systems biology and mechanics of growth. *Wiley interdisciplinary reviews.
849 Systems biology and medicine* 7, 401–412.

850 Fan, W., Adebawale, K., Váncza, L., Li, Y., Rabbi, M.F., Kunimoto, K., Chen, D., Mozes, G., Chiu, D.K.-
851 C., Li, Y., Tao, J., Wei, Y., Adeniji, N., Brunsing, R.L., Dhanasekaran, R., Singh, A., Geller, D., Lo,
852 S.H., Hodgson, L., Engleman, E.G., Charville, G.W., Charu, V., Monga, S.P., Kim, T., Wells, R.G.,
853 Chaudhuri, O., Török, N.J., 2024. Matrix viscoelasticity promotes liver cancer progression in the pre-
854 cirrhotic liver. *Nature*, 1–8.

855 Foroughi, A.H., Valeri, C., Jiang, D., Ning, F., Razavi, M., Razavi, M.J., 2023. Understanding compressive
856 viscoelastic properties of additively manufactured PLA for bone-mimetic scaffold design. *Medical
857 Engineering & Physics* 114, 103972.

858 Fung, Y.C., 1990. *Biomechanics: Motion, Flow, Stress, and Growth*. Springer-Verlag, New York, NY.

859 Galie, P.A., Georges, P.C., Janmey, P.A., 2022. How do cells stiffen? *Biochemical Journal* 479, 1825–1842.

860 Garcia, K.E., Kroenke, C.D., Bayly, P.V., 2018. Mechanics of cortical folding: stress, growth and stability.
861 *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* 373.

862 Goriely, A., 2017. *The Mathematics and Mechanics of Biological Growth*. Springer New York, New York,
863 NY.

864 Hadzipasic, M., Zhang, S., Huang, Z., Passaro, R., Sten, M.S., Shankar, G.M., Nia, H.T., 2023. Emergence
865 of nanoscale viscoelasticity from single cancer cells to established tumors. *Biomaterials* 305, 122431.

866 Hang, J.-T., Xu, G.-K., Gao, H., 2022. Frequency-dependent transition in power-law rheological behavior
867 of living cells. *Science advances* 8, eabn6093.

868 Hiscox, L.V., McGarry, M.D.J., Schwab, H., van Houten, E.E.W., Pohlig, R.T., Roberts, N., Huesmann,
869 G.R., Burzynska, A.Z., Sutton, B.P., Hillman, C.H., Kramer, A.F., Cohen, N.J., Barbey, A.K., Paulsen,
870 K.D., Johnson, C.L., 2020. Standard-space atlas of the viscoelastic properties of the human brain. *Human
871 Brain Mapping* 41, 5282–5300.

872 Hiscox, L.V., Schwab, H., McGarry, M.D.J., Johnson, C.L., 2021. Aging brain mechanics: Progress and
873 promise of magnetic resonance elastography. *NeuroImage* 232, 117889.

874 Hobson, E.C., Li, W., Julian, B.A., Putnam, A.J., Stegemann, J.P., Deng, C.X., 2021. Resonant acoustic
875 rheometry for non-contact characterization of viscoelastic biomaterials. *Biomaterials* 269, 120676.

876 Holland, M.A., Li, B., Feng, X.Q., Kuhl, E., 2017. Instabilities of soft films on compliant substrates. *Journal
877 of the Mechanics and Physics of Solids* 98, 350–365.

878 Huang, D., Huang, Y., Xiao, Y., Yang, X., Lin, H., Feng, G., Zhu, X., Zhang, X., 2019. Viscoelasticity in
879 natural tissues and engineered scaffolds for tissue reconstruction. *Acta biomaterialia* 97, 74–92.

880 Huang, W.-Z., Li, B., Feng, X.-Q., 2023. Mechanobiological tissue instability induced by stress-modulated
881 growth. *Soft Matter* 19, 708–722.

882 Huang, W.-Z., Li, B., Feng, X.-Q., 2024. Mechanobiological tortuosity of blood vessels with stress-
883 modulated growth and remodeling. *Journal of the Mechanics and Physics of Solids* 186, 105605.

884 Iwashita, M., Kataoka, N., Toida, K., Kosodo, Y., 2014. Systematic profiling of spatiotemporal tissue and
885 cellular stiffness in the developing brain. *Development* 141, 3793–3798.

886 Karzbrun, E., Kshirsagar, A., Cohen, S.R., Hanna, J.H., Reiner, O., 2018. Human Brain Organoids on a Chip
887 Reveal the Physics of Folding. *Nature physics* 14, 515–522.

888 Katira, P., Bonnecaze, R.T., Zaman, M.H., 2013. Modeling the mechanics of cancer: effect of changes in
889 cellular and extra-cellular mechanical properties. *Frontiers in oncology* 3, 145.

890 Khajehsaeid, H., Arghavani, J., Naghdabadi, R., Sohrabpour, S., 2014. A visco-hyperelastic constitutive
891 model for rubber-like materials: A rate-dependent relaxation time scheme. *International Journal of
892 Engineering Science* 79, 44–58.

893 Li, B., Cao, Y.-P., Feng, X.-Q., Gao, H., 2011. Surface wrinkling of mucosa induced by volumetric growth:
894 Theory, simulation and experiment. *Journal of the Mechanics and Physics of Solids* 59, 758–774.

895 Li, Y., Liu, N., Xie, N., Wei, Z., Liang, X., Xu, F., 2024. Extracellular fluid viscosity: a new physical cue in
896 cell biology. *Acta Mechanica Sinica* 40, 624056.

897 Lin, Z., Wei, Y., 2020. A strain gradient linear viscoelasticity theory. *International Journal of Solids and
898 Structures* 203, 197–209.

899 Lin, Z., Wei, Y., 2022. The Cross-Scale Strengthening-Softening Behavior of Solids With the Pressurized
900 Cylindrical Cell. *Journal of Applied Mechanics* 89, 091007.

901 Lin, Z., Yu, Z., Wei, Y., Wang, Y., 2021. Strain gradient viscoelastic solution and cross-scale hardening-
902 softening behavior for a pressurized thick spherical shell cell. *Mechanics of Materials* 159, 103902.

903 Long, Y., Niu, Y., Liang, K., Du, Y., 2021. Mechanical communication in fibrosis progression. *Trends in
904 Cell Biology* 32, 70–90.

905 Lyu, C., Kong, W., Liu, Z., Wang, S., Zhao, P., Liang, K., Niu, Y., Yang, W., Xiang, C., Hu, X., Li, X., Du,
906 Y., 2023. Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular
907 matrix in scarred liver tissue. *Nat Biomed Eng* 7, 1437–1454.

908 Mao, Y., Wickström, S.A., 2024. Mechanical state transitions in the regulation of tissue form and function.
909 *Nat Rev Mol Cell Biol*, 1–17.

910 McGinn, J., Hallou, A., Han, S., Krizic, K., Ulyanchenko, S., Iglesias-Bartolome, R., England, F.J.,
911 Verstreken, C., Chalut, K.J., Jensen, K.B., Simons, B.D., Alcolea, M.P., 2021. A biomechanical switch
912 regulates the transition towards homeostasis in oesophageal epithelium. *Nat Cell Biol* 23, 511–525.

913 Mierke, C.T., 2022. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. *Frontiers in cell and
914 developmental biology* 10, 789841.

915 Mongera, A., Pochitaloff, M., Gustafson, H.J., Stooke-Vaughan, G.A., Rowghanian, P., Kim, S., Campàs,
916 O., 2023. Mechanics of the cellular microenvironment as probed by cells in vivo during zebrafish
917 presomitic mesoderm differentiation. *Nature materials*.

918 Mongera, A., Rowghanian, P., Gustafson, H.J., Shelton, E., Kealhofer, D.A., Carn, E.K., Serwane, F., Lucio,
919 A.A., Giammona, J., Campàs, O., 2018. A fluid-to-solid jamming transition underlies vertebrate body
920 axis elongation. *Nature* 561, 401–405.

921 Morrison, O., Destrade, M., Tripathi, B.B., 2023. An atlas of the heterogeneous viscoelastic brain with local
922 power-law attenuation synthesised using Prony-series. *Acta biomaterialia* 169, 66–87.

923 Narooei, K., Arman, M., 2018. Generalization of exponential based hyperelastic to hyper-viscoelastic model
924 for investigation of mechanical behavior of rate dependent materials. *Journal of the Mechanical Behavior
925 of Biomedical Materials* 79, 104–113.

926 Panda, S.K., Buist, M.L., 2018. A finite nonlinear hyper-viscoelastic model for soft biological tissues.
927 *Journal of Biomechanics* 69, 121–128.

928 Patiño Vargas, M.I., Martínez-García, F.D., Offens, F., Becerra, N.Y., Restrepo, L.M., van der Mei, Henny
929 C., Harmsen, M.C., van Kooten, T.G., Sharma, P.K., 2022. Viscoelastic properties of plasma-agarose
930 hydrogels dictate favorable fibroblast responses for skin tissue engineering applications. *Biomaterials
931 Advances* 139, 212967.

932 Pegoraro, A.F., Janmey, P., Weitz, D.A., 2017. Mechanical Properties of the Cytoskeleton and Cells. *Cold
933 Spring Harbor perspectives in biology* 9, 1–12.

934 Persson, L.B., Ambati, V.S., Brandman, O., 2020. Cellular control of viscosity counters changes in
935 temperature and energy availability. *Cell* 183, 1572–1585.e16.

936 Petridou, N.I., Corominas-Murtra, B., Heisenberg, C.-P., Hannezo, E., 2021. Rigidity percolation uncovers
937 a structural basis for embryonic tissue phase transitions. *Cell* 184, 1914–1928.e19.

938 Petridou, N.I., Heisenberg, C.-P., 2019. Tissue rheology in embryonic organization. *The EMBO journal* 38,
939 e102497.

940 Rahman, M.M., Feng, Y., Yankeelov, T.E., Oden, J.T., 2017. A fully coupled space–time multiscale
941 modeling framework for predicting tumor growth. *Computer Methods in Applied Mechanics and
942 Engineering* 320, 261–286.

943 Rebelo, L.M., Sousa, J.S. de, Mendes Filho, J., Radmacher, M., 2013. Comparison of the viscoelastic
944 properties of cells from different kidney cancer phenotypes measured with atomic force microscopy.
945 *Nanotechnology* 24, 55102.

946 Reiter, R., Shahryari, M., Tzschätzsch, H., Haas, M., Bayerl, C., Siegmund, B., Hamm, B., Asbach, P., Braun,
947 J., Sack, I., 2021. Influence of fibrosis progression on the viscous properties of in vivo liver tissue
948 elucidated by shear wave dispersion in multifrequency MR elastography. *Journal of the Mechanical
949 Behavior of Biomedical Materials* 121, 104645.

950 Riccobelli, D., Bevilacqua, G., 2020. Surface tension controls the onset of gyration in brain organoids.
951 *Journal of the Mechanics and Physics of Solids* 134, 103745.

952 Rodriguez, E.K., Hoger, A., McCulloch, A.D., 1994. Stress-dependent finite growth in soft elastic tissues.
953 *Journal of Biomechanics* 27, 455–467.

954 Rother, J., Nöding, H., Mey, I., Janshoff, A., 2014. Atomic force microscopy-based microrheology reveals
955 significant differences in the viscoelastic response between malign and benign cell lines. *Open biology*
956 4, 140046.

957 Sauer, F., Grosser, S., Shahryari, M., Hayn, A., Guo, J., Braun, J., Briest, S., Wolf, B., Aktas, B., Horn, L.-
958 C., Sack, I., Käs, J.A., 2023. Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo.
959 *Advanced science (Weinheim, Baden-Württemberg, Germany)* 10, e2303523.

960 Soleimani, M., Muthyalu, N., Marino, M., Wriggers, P., 2020. A novel stress-induced anisotropic growth
961 model driven by nutrient diffusion: Theory, FEM implementation and applications in bio-mechanical
962 problems. *Journal of the Mechanics and Physics of Solids* 144, 104097.

963 Streitberger, K.-J., Lilaj, L., Schrank, F., Braun, J., Hoffmann, K.-T., Reiss-Zimmermann, M., Käs, J.A.,
964 Sack, I., 2020. How tissue fluidity influences brain tumor progression. *Proceedings of the National
965 Academy of Sciences* 117, 128–134.

966 Sun, S.-Y., Zhang, H., Fang, W., Chen, X., Li, B., Feng, X.-Q., 2022. Bio-chemo-mechanical coupling
967 models of soft biological materials: A review. *Advanced in Applied Mechanics* 55, 309–392.

968 Tetley, R.J., Staddon, M.F., Heller, D., Hoppe, A., Banerjee, S., Mao, Y., 2019. Tissue fluidity promotes
969 epithelial wound healing. *Nat. Phys.* 15, 1195–1203.

970 Thompson, A.J., Pillai, E.K., Dimov, I.B., Foster, S.K., Holt, C.E., Franze, K., 2019. Rapid changes in tissue
971 mechanics regulate cell behaviour in the developing embryonic brain. *eLife* 8, e39356.

972 Walker, B.J., Celora, G.L., Goriely, A., Moulton, D.E., Byrne, H.M., 2023a. Minimal Morphoelastic Models
973 of Solid Tumour Spheroids: A Tutorial. *Bulletin of mathematical biology* 85, 1–35.

974 Walker, M., Pringle, E.W., Ciccone, G., Oliver-Cervelló, L., Tassieri, M., Gourdon, D., Cantini, M., 2023b.
975 Mind the Viscous Modulus: The Mechanotransductive Response to the Viscous Nature of Isoelastic
976 Matrices Regulates Stem Cell Chondrogenesis. *Adv. Healthcare Mater.*, e2302571.

977 Wang, H., Liu, Y.-Q., Hang, J.-T., Xu, G.-K., Feng, X.-Q., 2024. Dynamic high-order buckling and
978 spontaneous recovery of active epithelial tissues. *Journal of the Mechanics and Physics of Solids* 183,
979 105496.

980 Wang, Y., Du, Y., Xu, F., 2023. Strain stiffening retards growth instability in residually stressed biological
981 tissues. *Journal of the Mechanics and Physics of Solids* 178, 105360.

982 Wu, Z., Yang, Z., Sha, D., Ma, Y., Kim, B.Y.S., Jiang, W., Yuan, Y., Liu, C., 2022. Injectable, viscoelastic
983 hydrogel precisely regulates developmental tissue regeneration. *Chemical Engineering Journal* 434,
984 133860.

985 Xu, F., Huang, Y., Zhao, S., Feng, X.-Q., 2022. Chiral topographic instability in shrinking spheres. *Nat
986 Comput Sci* 2, 632–640.

987 Xue, S.-L., Li, B., Feng, X.-Q., Gao, H., 2016. Biochemomechanical poroelastic theory of avascular tumor
988 growth. *Journal of the Mechanics and Physics of Solids* 94, 409–432.

989 Xue, S.-L., Yin, S.-F., Li, B., Feng, X.-Q., 2018. Biochemomechanical modeling of vascular collapse in
990 growing tumors. *Journal of the Mechanics and Physics of Solids* 121, 463–479.

991 Yin, S., Li, B., Feng, X.-Q., 2022. Three-dimensional chiral morphodynamics of chemomechanical active
992 shells. *Proceedings of the National Academy of Sciences* 119, e2206159119.

993 Yin, S.-F., Xue, S.-L., Li, B., Feng, X.-Q., 2019. Bio-chemo-mechanical modeling of growing biological
994 tissues: Finite element method. *International Journal of Non-Linear Mechanics* 108, 46–54.

995 Yu, P., Li, B., 2024. Three-dimensional morphogenesis of epithelial tubes. *Acta Mechanica Sinica* 40,
996 623297.

997 Zhang, K., Zhu, M., Thomas, E., Hopyan, S., Sun, Y., 2021. Existing and Potential Applications of
998 Elastography for Measuring the Viscoelasticity of Biological Tissues In Vivo. *Front. Phys.* 9, 670571.

999 Zhou, J., Jiang, L., Khayat, R.E., 2018. A micro-macro constitutive model for finite-deformation
1000 viscoelasticity of elastomers with nonlinear viscosity. *Journal of the Mechanics and Physics of Solids*
1001 110, 137–154.

1002

Appendix A. Transport equation

Let ρ_0 and ρ_g denote densities of the tissue in the initial and virtual states, respectively. The element mass in the virtual state is $dm_g = \rho_g dV_g$. Because no mass increases between the virtual and current states, the mass relation is

$$dm_g = dm, \quad \rho_g dV_g = \rho dV = \rho J dV_0 = \rho J_a dV_g \quad (S1)$$

Thus,

$$\rho_g = \rho J_a \quad (S2)$$

where dV_0 and dV_g denote the initial and virtual volume elements, respectively. It has $dV = J dV_0$ and $dV_g = J_g dV_0 = J_a^{-1} dV$. Besides, the mass growth without flux from the boundaries is,

$$\frac{d}{dt}(\rho dV) = \rho \gamma_g dV \quad (S3)$$

Let A denote a quality per unit current mass. By using $A \rho dV = A \rho J dV_0$, one has

$$\frac{d}{dt}(A \rho dV) = \frac{dA}{dt} \rho dV + A \frac{d}{dt}(\rho dV) = \frac{dA}{dt} \rho dV + A \rho \gamma_g dV \quad (S4)$$

and its integration gives

$$\frac{d}{dt} \int_{\Omega} A \rho dV = \int_{\Omega} \frac{d(A \rho)}{dt} dV + \int_{\Omega} A \rho \operatorname{div} \mathbf{v} dV = \int_{\Omega} \rho \frac{dA}{dt} dV + \int_{\Omega} \rho \gamma_g A dV \quad (S5)$$

which is the growth rate related transport equation.

Appendix B. Multiscale viscoelastic model

Viscoelasticity of tissue can be expressed as the effects of several key factors at multiscale. These effects may be simplified and abstracted as a modulus function, i.e., $G = f(D, C, M, A, R)$, where D, C, M, A , and R denote the effect of cell density, cell types, ECM property, adhesion effect, and cytoskeleton evolution, respectively (Fig. S1a). In the following, we illustrate the relations between viscoelastic parameters and the cell-to-tissue phenomena.

Experimental studies have shown that the cell density varies in different regions of zebrafish embryos along the AP axis (Mongera et al., 2023). The modulus and viscosity decrease as the extracellular spaces between cells increase (Fig. S2b). Therefore, we can simply give the relation between cell density and viscoelastic parameter, as

$$G_{D\infty} = \frac{k_1}{D_{\text{density}}}, \quad \xi_D = \frac{k_2}{D_{\text{density}}}, \quad (\text{S6})$$

where $G_{D\infty}$ and ξ_D are the long-term modulus and viscosity parameter due to the effect of cell density, and k_1 and k_2 are two parameters to be determined.

For the adhesion effect, drawing on the relation between cell-cell tension and tissue viscosity in the previous study (Fig. S1c), we can simply give

$$\xi_A = k_3 \exp(A_{\text{c-adhesion}}) + k_4 \exp(A_{\text{i-adhesion}}), \quad (\text{S7})$$

where ξ_A is the viscosity parameter due to the effect of adhesion, $A_{\text{c-adhesion}}$ and $A_{\text{i-adhesion}}$ correspond to cell-cell adhesion and cell-matrix adhesion, respectively, k_3 and k_4 are parameters to be determined. For the ECM effect, previous studies have shown that the stiffness and viscosity increase with as liver fibrosis (Fan et al., 2024; Lyu et al., 2023; Fig. S1d). Therefore, we try to give the relation

$$\begin{aligned} G_{M\infty} &= k_5 M_{\text{n-fibril}} + k_6 M_{\text{n-crosslinker}}, \\ \xi_M &= k_7 M_{\text{n-fibril}} + k_8 M_{\text{n-crosslinker}}, \end{aligned} \quad (\text{S8})$$

where $G_{M\infty}$ and ξ_M are the long-term modulus and viscosity parameter of ECM, $M_{\text{n-fibril}}$ and $M_{\text{n-crosslinker}}$ correspond to the density of fibrils and crosslinkers, respectively, $k_5 \sim k_8$ are parameters to be determined.

Different types of cells have various stiffness and viscosity. Simply, we can use the homogenization method to obtain the modulus and viscosity in a representative element, as

$$G_{C\infty} = \frac{\sum_{i=1}^n G_i V_i}{V}, \quad \xi_C = \frac{\sum_{i=1}^n \xi_i V_i}{V}, \quad (\text{S9})$$

where $G_{C\infty}$ and ξ_C are the long-term modulus and the viscosity parameter that combine different types of cells, G_i , ξ_i and V_i are the long-term modulus, viscosity parameter and volume of the i type cell, V is the total volume of the representative element. The cytoskeleton and cell contractility can influence the viscoelasticity of a cell (Galie et al., 2022; Yin et al., 2022). This effect is captured in G_i and ξ_i , while the quantitative metrics for viscoelastic parameters need further study.

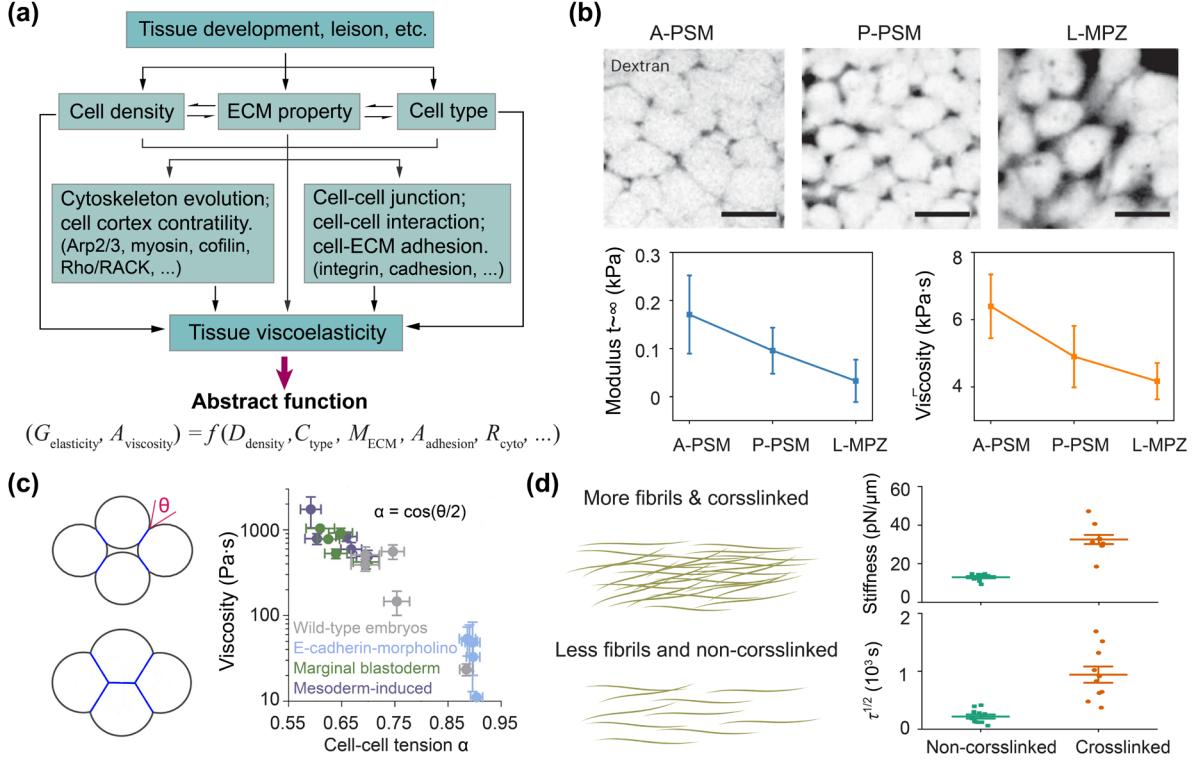


Fig. S1. Multiscale viscoelastic mechanisms. (a) Methodology to correlate macroscopic viscoelasticity with underlying multiscale mechanisms. (b) Viscoelasticity varies with cell density in different parts of zebrafish embryos, where A-PSM: presomitic mesoderm in the AP axis, P-PSM: posterior presomitic mesoderm, MPZ: lateral part of the mesodermal progenitor zone (Mongera et al., 2023). (c) Influence of cell-cell adhesion on tissue viscosity (Petridou et al., 2021). (d) Schematic of ECM fibrils and crosslinking (left) and modulation of crosslinking on collagen matrix (right, Lyu et al., 2023). Longer relaxation time $\tau^{1/2}$ corresponds to larger viscosity.

Eqs. (S6-S9) represent different scale influences on viscoelasticity. To combine these multiscale effects, we may borrow ideas from the cross-scale viscoelasticity theory (Ding et al., 2024; Lin et al., 2021; Lin and Wei, 2022, 2020). We write the total potential energy density as

$$w = \frac{1}{2} (G_D * d\varepsilon_D * d\varepsilon_D + G_A * d\varepsilon_A * d\varepsilon_A + G_M * d\varepsilon_M * d\varepsilon_M + G_C * d\varepsilon_C * d\varepsilon_C), \quad (\text{S10})$$

where G_{\blacksquare} denotes the viscoelastic modulus related to different effects, $\varepsilon_{\blacksquare}$ is the corresponding strain, $*$ is the Stieltjes convolution symbol. The Stieltjes convolution is defined as $\phi * d\varphi = \int_{-\infty}^t \phi(t - \zeta) \varphi(\zeta) dt$. Strains from different scales can be related. If we give an effective strain ε_e , the corresponding effective stress can be $\sigma_e = \partial w / \partial \varepsilon_e$. The stress can be written as $\sigma_e = G * d\varepsilon_e$, where G is the effective modulus, as

$$G = f(D, C, M, A, R, t). \quad (\text{S11})$$

It should consist of a purely elastic part (long-term modulus G_∞), a viscous part (viscosity ξ), and a related elastic part G_1 at least to characterize the relaxation time together with ξ . To explicitly show the effect of viscoelasticity, we combine these parameters based on the three-parameter viscoelastic model (Fig. 2c). Therefore, the effective modulus can be written as $G(t) = G_\infty + G_1 \exp(-t G_1 / \xi)$. The changes in viscoelastic modulus and relaxation time during tissue development (Section 4, Fig. 10) are related to multiscale mechanisms. For example, the increase in modulus and viscosity may correspond to the process of fibrosis or cell jamming.

However, the influence of multiscale phenomena cannot be completely separated. For example, the difference in cell density in Fig. S1b would involve cell-cell adhesion. The change in ECM property would also influence cell-ECM adhesion. This section only presents a rough equivalent thought and methodology. Further experimental and theoretical studies are needed to capture the complex relation between multiscale mechanisms and viscoelastic parameters.

Appendix C. Viscoelastic effects on tissue growth

Our model predicts that viscoelastic properties facilitate tissue growth by reducing the rate of residual stress accumulation. This is consistent with the stress-induced growth studies, where smaller residual stress is beneficial for growth. Furthermore, we compare our results with the simulation results reported by Elosegui-Artola et al., as shown in Fig. S2. Their study investigates tissue growth in viscoelastic and elastic environments using a four-parameter viscoelastic model, and the observed trends regarding the influence of viscoelasticity on growth rates are consistent with our findings. Besides, different viscoelastic models have been used to characterize the viscoelasticity of tissues, such as the Maxwell model, the three-parameter model, the four-parameter model, and the generalized Maxwell model. In this paper, we use the widely used three-parameter model.

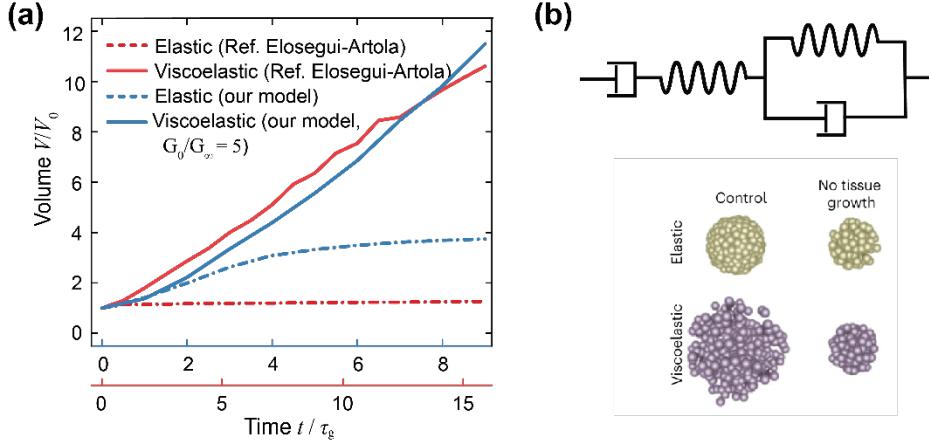


Fig. S2. Comparison between our results and some previous studies on the viscoelastic effects on tissue growth. (a) Comparison between our model and the active particle simulations made by Elosegui-Artola et al. (b) The four-parameter viscoelastic parameter and an active particle model used by Elosegui-Artola et al.

Appendix D. Effects of nutrition consumption

The mechanobiological growth of soft biological tissues is determined by both stress state and nutrient density. Nutrients can include the availability of essential nutrients, including glucose, amino acids, oxygen, and growth factors. We use a total nutrient density function to represent these biochemical factors. The comparison between the sufficient and limited nutrient availability conditions is illustrated in Fig. S3. It shows that limited nutrient availability may significantly slow the growth rate.

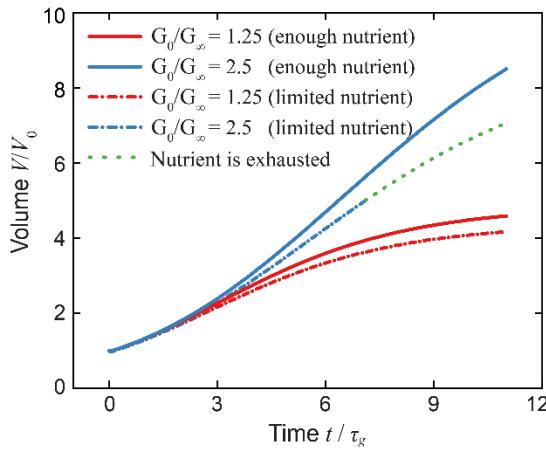


Fig. S3. Effects of nutrient density on tissue growth. The solid curves correspond to the sufficient nutrient availability condition, i.e., nutrient density does not decrease during growth. The dash-dot curves correspond to the limited nutrient availability condition, where the total nutrient supply remains constant, and the nutrient density decreases linearly as the growth volume increases.

Appendix E. Effects of viscoelastic changes on morphological evolution

During tissue development, viscoelasticity can change, which may be significant for the morphological evolution (Iwashita et al., 2014; Petridou and Heisenberg, 2019; Thompson et al., 2019). Fig. S4 shows the brain folding progress (Fig. S4a) and viscoelasticity during tissue development (Fig. S4b-c). It indicates that the viscoelasticity changes can influence the morphological changes, in qualitative consistency with our simulations, as shown in Fig.13. Studying the effect of relaxation time transitions on morphological evolution would require detailed parameterization in experiments.

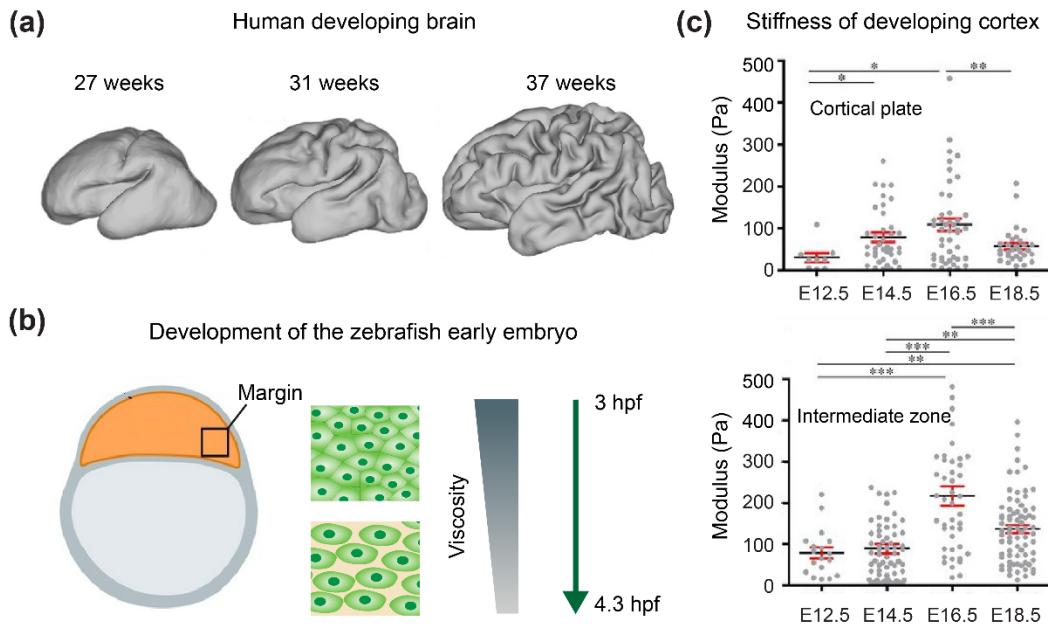


Fig. S4. Changes of viscoelasticity in developing brains and embryos. (a) Cortical folding progress is shown after birth in preterm human (Garcia et al., 2018). (b) Viscosity of zebrafish early embryos from the blastula (3 hpf) to the dome stage (4.3 hpf) (Petridou and Heisenberg, 2019). (c) Stiffness of developing mice cortex, where E12.5, E14.5, E16.5, and E18.5 denote different embryonic stages (Iwashita et al., 2014).