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A Physics-Informed Neural Network Framework for Simulating Creep Buckling in Growing
Viscoelastic Biological Tissues
Zhongya Lin, Jinshuai Bai, Shuang Li, Xindong Chen, Bo Li, Xi-Qiao Feng

• An energy-based PINN framework is developed for nonlinear viscoelasticity, encompassing creep buckling and
tissue development.

• Inherent training oscillations in PINN naturally trigger creep buckling of viscoelastic structures without artificial
perturbations.

• Viscoelastic growth and morphogenesis simulations using energy-based PINN reveal complex folding patterns
relevant to tissue development.
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A B S T R A C T
Modeling viscoelastic behavior is crucial in engineering and biomechanics, where materials
undergo time-dependent deformations, including stress relaxation, creep buckling and biological
tissue development. Traditional numerical methods, like the finite element method, often require
explicit meshing, artificial perturbations or embedding customised programs to capture these
phenomena, adding computational complexity. In this study, we develop an energy-based
physics-informed neural network (PINN) framework using an incremental approach to model
viscoelastic creep, stress relaxation, buckling, and growth-induced morphogenesis. Physics
consistency is ensured by training neural networks to minimize the system’s potential energy
functional, implicitly satisfying equilibrium and constitutive laws. We demonstrate that this
framework can naturally capture creep buckling without pre-imposed imperfections, leveraging
inherent training dynamics to trigger instabilities. Furthermore, we extend our framework to
biological tissue growth and morphogenesis, predicting both uniform expansion and differential
growth-induced buckling in cylindrical structures. Results show that the energy-based PINN
effectively predicts viscoelastic instabilities, post-buckling evolution and tissue morphological
evolution, offering a promising alternative to traditional methods. This study demonstrates that
PINN can be a flexible robust tool for modeling complex, time-dependent material behavior,
opening possible applications in structural engineering, soft materials, and tissue development.

1. Introduction1

Many materials, including polymers, biological tissues and soft composites, exhibit combination of elastic energy2

storage and viscous energy dissipation [1], i.e., the viscoelastic properties (Fig.1a). Understanding and predicting3

the time-dependent phenomena are essential for numerous engineering and biological applications [2], such as4

designing advanced materials [3], optimizing structural performance [4, 5], and studying biological tissue growth and5

morphogenesis [6]. The complex viscoelastic behaviors, particularly in cases involving large deformations, nonlinear6

responses, and evolving geometries, present persistent modeling challenges.7

Over the past decades, computational approaches such as the finite element method (FEM) and finite difference8

method have been widely used to simulate viscoelastic responses, including creep, stress relaxation, buckling9

instabilities, and wave propagation [7, 8, 9, 10]. While these methods have been successful in many scenarios, they10

often require refined meshing strategies and explicit perturbations for specific problems. For example, in the instability11

analysis, traditional FEM always need artificial perturbations or imperfections which can lead to different buckling12

modes [11]. Moreover, in highly nonlinear and evolving systems, such as biological growth and morphogenesis, these13
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conventional approaches can struggle to handle very complex geometries or require complex implementation strategies14

[12, 13]. The need for a more adaptive computational framework is evident.15

Fig. 1. Viscoelastic materials and models. (a) Viscoelasticity is very common among different materials, e.g., hydrogels,
bitumen [14], and soft biological tissues. (b-c) The viscoelastic models used for mechanical modeling. (b) The general
Maxwell model. (c) The standard three-parameter model.

Physics-informed neural network (PINN) has recently emerged as a promising alternative to solve some numerical16

problems [15, 16]. PINN offers a mesh-free approach that combines data and physical laws to solve differential17

equations by embedding the governing physics into the loss function of neural networks [15, 17]. It has been18

successfully applied to forward and inverse problems in fluid dynamics [18, 19], solid mechanics [20, 21], and material19

science [22, 23], demonstrating their capability to solve physical problems. For the viscoelastic research, the inverse20

viscoelastic problem has been studied using a deep neural network to obtain parametric and neural-network-based21

viscoelastic models from limited displacement data [24]. A proposed ViscoelasticNet using PINN with appropriate22

constitutive models was applied to learn stress fields of viscoelastic fluids [25]. The deep energy method was developed23

to solve partial differential equations governing the deformation of hyperelastic and viscoelastic materials [26]. It24

leverages the variational principles of mechanics, training networks to minimize a system’s potential energy functional.25
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These pioneering applications validate the use of PINN and related deep learning techniques for mechanical simulation26

and viscoelastic constitutive modeling.27

For instability studies, buckling analysis of Kirchhoff plates has been implemented using the deep energy28

method with the buckling governing equations-related loss function to predict the critical buckling load [21]. While29

this marks significant progress for elastic instabilities, the distinct phenomenon of creep buckling of viscoelastic30

structures—where instability develops over time under sustained load due to viscosity—necessitates a dedicated PINN31

formulation capable of handling long-term temporal integration and history-dependent material laws. Indeed, for32

viscoelastic structures, the creep buckling is one of the important failure modes, signifying failure after a period under33

steady load either via sudden snapping or excessive deflection [27]. Additionally, during growth and development of34

soft biological tissues with viscoelastic property, the symmetry broken and geometrical stability loss are important35

processes for tissue morphogenesis [28, 29, 30]. Despite the large potential of PINN, extending these approaches36

to capture creep buckling of viscoelastic structures, and to model the intricate interplay of mechanics and material37

evolution in viscoelastic growth and morphogenesis, presents difficulties and remains for investigation.38

Addressing these challenges, this study develops and applies an energy-based PINN framework for modeling39

viscoelastic behavior. We extend the energy-based PINN framework [20, 31, 26, 21] to the setting of nonlinear40

viscoelasticity, where the governing equations depend not only on the instantaneous deformation but also on the41

full deformation history. This requires incorporating time-dependent evolution laws and coupling elastic and viscous42

energy contributions directly within the PINN formulation. Building on this foundation, we further examine how43

the dynamics of network optimization influence the numerical solution and show that optimizer-induced oscillations44

can serve as an intrinsic perturbation mechanism capable of initiating buckling in viscoelastic structures. In addition,45

we apply the framework to growth-induced deformation and morphogenesis, demonstrating that differential growth46

in cylindrical geometries can naturally lead to geometric instabilities and pattern formation. These results reveal47

that physics-informed neural networks can serve as an effective and flexible computational tool for simulating time-48

dependent material behavior and morphogenesis beyond the reach of conventional numerical methods. The remainder49

of this paper is organized as follows: Section 2 introduces the mathematical formulation of viscoelasticity. Section50

3 details the implementation of PINN for viscoelastic simulation, and the benchmark of creep and stress relaxation.51

Section 4 explores the role of training oscillations in capturing creep buckling phenomena. Section 5 extends the52

framework to viscoelastic growth and morphogenesis, demonstrating its potential in biological applications. Finally,53

Section 6 discusses the advantages, limitations, and future research directions.54
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2. Basic Equations for Viscoelastic Problems55

2.1. Governing Equation of Nonlinear Viscoelasticity56

Let Ω be the configuration of a body in the three-dimensional Euclidean space 𝔼3, and the corresponding initial57

configuration is Ω0. The deformation gradient tensor is 𝐅, and 𝐅 = Δ𝐮 + 𝐈, where 𝐮 is the displacement vector and 𝐈58

is the identity tensor. For hyperelastic neo-Hookean materials, the stain energy density can be expressed as [32]59

𝑤 = 𝐺
2
(

𝐼1 − 3 − 2 ln 𝐽
)

+ 𝜆
2
(𝐽 − 1)2 , (1)

where 𝜆 is the Lamé’s first parameter, 𝐺 is shear modulus, 𝐽 = det (𝐅) is the Jacobian which measure the relative60

volume change, 𝐼1 = 𝐵𝑖𝑖 is the first deformation invariant. 𝐁 = 𝐅 ⋅ 𝐅𝑇 is the left Cauchy-Green deformation tensor.61

The Cauchy stress formula can be deduced by differentiating the strain gradient density, as62

𝜎𝑖𝑗 =
1
𝐽
𝐹𝑖𝑘

𝜕𝑤
𝜕𝐹𝑗𝑘

= 𝐺
𝐽
(𝐁 − 𝐈) + 𝜆 (𝐽 − 1) 𝐈, (2)

where the relations 𝜕𝐼1∕𝜕𝐹𝑖𝑗 = 2𝐹𝑖𝑗 and 𝜕𝐽∕𝜕𝐹𝑖𝑗 = 𝐽𝐹−1
𝑖𝑗 are used.63

For large-deformation viscoelastic model, based on previous studies [33, 34], the constitutive equation can be64

written as65

𝜎(𝑡) = ∫

𝑡

−∞
𝑚(𝑡 − 𝜁 ) 𝜕

𝜕𝜁

( 1
𝐽
𝐅 ⋅

𝜕𝑤
𝜕𝐅

)

d𝜁, (3)

where 𝑚(𝑡) is the dimensionless relaxation function and not changes during deformation. Using the general Maxwell66

model (Fig. 1b), 𝑚(𝑡) can be expressed by Prony series:67

𝑚(𝑡) = 𝑚∞ +
∑

𝑖
𝑚𝑖 exp

(

− 𝑡
𝜏𝑖

)

, (4)

where 𝜏𝑖 = 𝜉𝑖∕𝐸𝑖 are relaxation times, 𝑚∞ +
∑

𝑖 𝑚𝑖 = 1. If we describe viscoelasticity by standard solid model (Fig.68

1c), it has69

𝑚(𝑡) = 𝑚∞ + 𝑚1 exp
(

− 𝑡
𝜏

)

, (5)

where 𝑚∞ = 𝐸∞∕
(

𝐸∞ + 𝐸1
), 𝑚1 = 𝐸1∕

(

𝐸∞ + 𝐸1
), and 𝜏 = 𝐸1∕𝜉.70
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If following the description of neo-Hookean hyperelasticity (Eq. (2)) and the general viscoelastic form (Eq. (3)),71

the viscoelastic constitutive equation can be written as72

𝜎(𝑡) = ∫

𝑡

−∞
𝐺(𝑡 − 𝜁 ) 𝜕

𝜕𝜁

(𝐁 − 𝐈
𝐽

)

d𝜁 + ∫

𝑡

−∞
𝜆(𝑡 − 𝜁 ) 𝜕

𝜕𝜁
[(𝐽 − 1) 𝐈] d𝜁, (6)

where 𝐺(𝑡) and 𝜆(𝑡) are relaxation functions similar to the Lamé constants, assuming deviatoric and volumetric73

responses relax differently with isotropic relaxation functions.74

2.2. Stress Relaxation and Creep75

For viscoelastic stress relaxation condition, the deformation keeps constant, denoted as 𝐅0. Then, the Cauchy stress76

evolution equation can be obtained from Eq. (6), i.e.,77

𝜎(𝑡) = 𝐺(𝑡)
[𝐁0 − 𝐈

𝐽0

]

+ 𝜆(𝑡)
(

𝐽0 − 1
)

, (7)

where 𝐁0 = 𝐅0 ⋅ 𝐅𝑇
0 , 𝐽0 = det

(

𝐅0
). Specially, under the small deformation and one-dimensional condition, the strain78

keeps constant as 𝜀0, and the stress evolution equation reduces to 𝜎(𝑡) = 𝐸(𝑡)𝜀0 [35]. When using the standard solid79

model Fig. 1c, the stress is80

𝜎(𝑡) =
[

𝐸∞ + 𝐸1 exp
(

− 𝑡
𝜏

)]

𝜀0, (8)

and the stress relation rate is81

𝜎̇(𝑡) = −
𝐸1𝜀0
𝜏

exp
(

− 𝑡
𝜏

)

. (9)

The relaxation time 𝜏 means the needed time that the material relaxed all relatable stresses if the stress is relaxed with82

the initial rate 𝜎̇(0) = −(𝐸1𝜀0)∕𝜏.83

Creep is defined as the tendency of a solid material to deform permanently under the influence of constant stress.84

For creep condition, the stress keeps constant, i.e., 𝜎0. The strain creep function can be written as 𝐞(𝑡) = 𝐽 (𝑡)𝜎0, where85

𝐽 (𝑡) is the creep compliance function and 𝐞 is the strain tensor. The creep compliance can be obtained by applying the86

Laplace transform and inverting the relaxation function. It may be not solved analytically under large deformation, but87

the creep behavior can be captured easily by numerical method, like finite element analysis. Specially, for the small88

deformed one-dimensional case, the creep process becomes using the standard solid model (Fig. 1c)89

𝜀(𝑡) = 𝜎0

[

1
𝐸∞

−
𝐸1

𝐸∞(𝐸∞ + 𝐸1)
exp

(

− 𝑡
𝜏𝑟

)]

, (10)
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where the retardation time 𝜏𝑟 is defined as 𝜏𝑟 = 𝜏(𝐸∞ + 𝐸1)∕𝐸∞, which can characterized the creep behavior. The90

creep rate is91

𝜀̇(𝑡) =
𝜎0𝐸1

𝜏𝑟𝐸∞(𝐸∞ + 𝐸1)
exp

(

− 𝑡
𝜏𝑟

)

, (11)

If the material creep with the initial creep rate 𝜀̇(0) = 𝜎0𝐸1∕[𝜏𝑟𝐸∞(𝐸∞ + 𝐸1)], the duration of the creep process from92

𝜀(0) = 𝜎0∕(𝐸1 + 𝐸∞) to 𝜀(∞) = 𝜎0∕𝐸∞ is 𝜏𝑟.93

2.3. Creep Buckling of Viscoelastic Structures94

Creep buckling refers to a specific type of structural failure that occurs in materials subjected to a sustained95

compressive load over an extended period [27, 36]. As the material creeps, its effective rigidity decreases. This96

reduction can lower the critical buckling load, i.e., the maximum load that a structure can withstand before it buckles,97

leading to premature failure even when loads are lower than the instantaneous buckling thresholds.98

Bifurcation buckling may occur for slender structures under axial compression. For a linear elastic slender99

cantilever, the critical buckling load can be easily obtained as100

𝑃cb =
𝜋2𝐸𝐼𝑔
4𝑙2

, (12)

where 𝑙 is the length of cantilever, 𝐸 is the Young’s modulus of the material and 𝐼𝑔 is the area moment of inertia. For101

the cross-section with area 𝐴, the critical pressure is102

𝜎cb =
𝑝cb
𝐴

=
𝜋2𝐸𝐼𝑔
4𝐴𝑙2

. (13)

For a linear elastic thin-walled cylindrical shell under uniform radial pressure, the critical buckling pressure can103

be estimated by [27]104

𝑝cc =
2𝐸

1 − 𝜈2
( 𝑎
𝑑

)3
, (14)

where 𝑑 is the cylinder diameter, and 𝑎 is the wall thickness. If a structure, such as a slender beam or a thin-walled105

cylindrical shell, has viscoelastic properties, its stiffness will become smaller and the deformation will become larger106

under the constant external load with time. Thus, its critical buckling force will be smaller than its original state. For107

creep buckling analysis, we can easily use the quasi-static approach, that is, buckling occurs at time 𝑡𝑐𝑟 when the applied108

pressure 𝑝 equals the critical elastic buckling load calculated using the current relaxed modulus 𝐸(𝑡𝑐𝑟) and Eqs. (13)109

or (14).110
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2.4. Viscoelastic Tissue Growth111

Viscoelasticity is a fundamental property of biological soft tissues, characterized by their ability to exhibit both112

elastic and viscous behavior when subjected to deformation [37, 38]. The stress modulated growth models have been113

developed [39, 40, 41] since the stress-growth law proposed by Fung [42]. In this kind of growth model, the deformation114

gradient tensor is decomposed as (Fig. 2)115

𝐅 = 𝐅𝑎 ⋅ 𝐅𝑔 , (15)

where 𝐅𝑎 is the mechanical deformation tensor and 𝐅𝑔 is the growth tensor. The growth tensor is always written as116

𝐅𝑔 = 𝑔𝑖𝐈, where 𝑔𝑖 is the growth ratio. The growth rate is determined by the stress state [41, 28], i.e.,117

𝑔̇𝑖 = 𝑘
(

𝜎𝑖 + 𝑏𝑔𝑖
)

𝑔𝑖, (16)

where 𝐛𝑔 = 𝑏𝑔𝑖 𝐈 is the biochemical forces driving growth [43], and 𝑘 is a constant to regulate the stress effect on growth.118

For viscoelastic tissues, the stress 𝜎 is obtained by Eq. (6) using deformation gradient tensor 𝐅𝑎, which can relax as119

time goes. Stress relaxation slows residual stress accumulation, leading to increased growth rates [28].120

a gF = F F

aF
gF

Initial

Configuration

Virtual Configuration

Current

Configuration

( t),x = XX

Stress-free state

X x

Fig. 2. Diagram showing the decomposition of the deformation tensor when modeling tissue growth. The corresponding
deformation gradient is decomposed into 𝐅𝑎 and 𝐅𝑔. A material point with the coordinate vector 𝐗 in the initial configuration
is mapped to 𝐱 in the current configuration by 𝜒(𝐗, 𝑡). The viscoelasticity leads to time-dependent deformation, which
evolves with time.

A critical consequence of the differential or constrained growth described by the growth tensor 𝐅𝑔 , coupled with the121

viscoelastic response, is the generation of internal residual stresses [44, 28]. When growth is non-uniform (e.g., faster122

surface growth relative to the bulk) or spatially constrained, significant compressive stresses can accumulate within123
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the tissue over time. If these growth-induced compressive stresses reach a critical threshold, the initial configuration of124

the tissue may lose stability, leading to a buckling event [45, 41]. This mechanical instability provides a fundamental125

mechanism for morphogenesis, driving the spontaneous formation of complex patterns such as wrinkles, folds, or126

creases observed during development and other biological processes.127

Buckling analysis using the finite element method (FEM) often employs eigenvalue methods to determine the128

buckling load factor and associated mode shapes. In FEM, simulating the progression of instability, particularly129

time-dependent creep buckling, typically requires introducing perturbations or artificial imperfections. Additionally,130

modeling tissue growth within a finite element framework often requires the development of custom user programs131

capable of accurately simulating complex biological processes. In this study, we implement these problems using an132

energy-based physics-informed neural network framework, leveraging its potential to handle time-dependent properties133

and complex constitutive laws.134

3. Numerical Implementation of Viscoelasticity via Energy-based PINN135

This section details the numerical framework used to simulate the nonlinear viscoelastic phenomena described in136

the previous section. We employ an energy-based PINN approach, also known as the Deep Energy Method (DEM)137

[46, 26, 21, 20]. This method seeks the admissible displacement field that minimizes the total potential energy of138

the system. To handle the inherent time-dependency effect of viscoelasticity and growth, we utilize an incremental,139

time-stepping procedure, illustrated schematically in Fig. 3.140

3.1. Energy-Based Formulation for Viscoelasticity141

Fig. 3. Diagram of the physics-informed neural networks.
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In the energy-based PINN for viscoelasticity, the core idea is to approximate the displacement field 𝐮 at discrete142

time points 𝑡𝑖(𝑖 = 0, 1, ..., 𝑛) using the neural networks. At each time step 𝑡𝑖, we solve a pseudo-elastic problem. The143

network takes spatial coordinates 𝐱 as input and outputs the displacement vector at that specific time step:144

𝐮(𝐱, 𝑡𝑖) = 𝑁 (𝐱;𝜑) , (17)

where 𝑁(⋅) is the neural network mapping with trainable parameters 𝜑 at time step 𝑡𝑖, and 𝐱 is the position of material145

points. In practice, the neural network architecture, i.e. the number of hidden layers and the number of nodes per layer,146

is flexible and can be adjusted based on the PDE complexity [47, 31, 48, 49]. In this study, the neural network has three147

hidden layers and each layer contains twenty nodes.148

Before minimization at each time step 𝑡𝑖, the mechanical parameters 𝐺(𝑡) and 𝜆(𝑡) are determined based on149

the elapsed time and the chosen viscoelastic model. For the three-parameter model used here (Fig. 1c), there are150

𝐺(𝑡𝑖) = 𝐺∞ + 𝐺1 exp(−𝑡𝑖∕𝜏) and 𝜆(𝑡𝑖) = 𝜆∞ + 𝜆1 exp(−𝑡𝑖∕𝜏). This operation treats the material as elastic within the151

time step but with stiffness properties that reflect the relaxation that has occurred up to time 𝑡𝑖. The potential energy of152

such pseudo-elastic system at time step 𝑡𝑖 can be formulated as153

Π(𝑡𝑖) = ∫𝑉

[

𝐺(𝑡𝑖)
2

(

𝐼1 − 3 − 2 ln 𝐽
)

+
𝜆(𝑡𝑖)
2

(𝐽 − 1)2
]

d𝑉 − ∫𝑉
𝐟 (𝑡𝑖)𝐮(𝑡𝑖) d𝑉 − ∫𝑆

𝐩(𝑡𝑖)𝐮(𝑡) d𝑆, (18)

where 𝐟 is the body force, and the prescribed tractions 𝐩(𝑡𝑖) on the boundary. The network parameters 𝜑 are found by154

minimizing the loss function, that is, the potential energy:155

𝜑 = argmin
𝐮

 = argmin
𝐮

Π(𝐮, 𝐺, 𝜆, 𝑡𝑖), (19)

using the gradient descent method (e.g., Adam [50]). Once converged, the displacement field 𝐮(𝐱, 𝑡𝑖) is obtained, and the156

corresponding stress tensor can be calculated using the constitutive equation. Then, the simulation advances to the next157

time step 𝑡𝑖+1 with increment Δ𝑡. This incremental process allows simulation of the full time-dependent viscoelastic158

response.159

3.2. Implementation of Boundary Conditions160

Traction boundary conditions are naturally incorporated through the external work term in the potential energy161

functional Π. For displacement (essential) boundary conditions, there are two main approaches to impose within162

energy-based PINN: the soft and hard ways. The soft way means adding a penalty term to the loss function that penalizes163

deviations from the prescribed displacement [51, 20]. We use the hard enforcement to impose the displacement164
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boundary conditions. This method imposes the boundary conditions exactly without adding penalty terms to the loss165

function, which can be beneficial for training convergence [20]. 𝐮(𝐱, 𝑡) = 𝐮̄(𝐱, 𝑡) for 𝐱 ∈ Γ(𝐱) can satisfy by modifying166

the displacement filed output by PINN through distance functions:167

𝐮(𝐱, 𝑡𝑖) = 𝑁 (𝐱;𝜑)⊙ 𝑏(𝐱) + 𝐮̄(𝐱, 𝑡𝑖), (20)

where ⊙ means the element-wise product, and 𝑏 is an approximate distance function to the boundary Γ(𝐱) which168

denotes the shortest distance of a point 𝐱 to the essential boundary. The distance function is non-negative and 𝑏(𝐱) = 0169

only when 𝐱 ∈ Γ(𝐱). For the simple geometry with explicit boundaries, the method in Eq. (20) is easy to implement.170

For complex geometries, the boundary conditions can imposed using distance functions [52]. Different methods to171

impose displacement boundary conditions on PINN have been listed and compared in [53].172

3.3. Benchmark Test and Discussion173

Tensile creep and stress relaxation are fundamental benchmarks for studying viscoelasticity, providing a foundation174

for understanding time-dependent material responses under constant loading or deformation conditions. These175

phenomena are widely observed in engineering and biomechanics, playing critical roles in applications such as polymer176

mechanics, structural stability, and soft tissue mechanics. Due to their simplicity, analytical tractability, and practical177

relevance, we employ these problems to evaluate the performance of PINN in modeling viscoelastic behavior.178

For stress relaxation, where a constant deformation is applied, the stress response is described by Eq. (7). We179

consider a cantilever beam (length 𝐿 = 10 m, height ℎ = 1 m) subjected to a fixed tensile deformation Δ𝐿 = 1 m180

imposed instantaneously at 𝑡 = 0, as illustrated in Fig. 4a. The moduli are 𝐸∞ = 4 Pa, 𝐸1 = 6 Pa, the viscosity181

parameter is 𝜉 = 18 Pa⋅s, and the Poisson’s ratio is 𝜈 = 0.35. Thus, the relaxation time is 𝜏 = 𝜁∕𝐸1 = 3 s when using182

the standard linear viscoelastic model (Fig. 1c). During the calculation, the relaxation functions still using the relations183

𝐺(𝑡) = 𝐸(𝑡)∕2∕(1 + 𝜈), 𝜆(𝑡) = 𝜈𝐸(𝑡)∕(1 + 𝜈)(1 − 2𝜈), and the Poisson’s ratio 𝜈 is time-independent. The fixed left end184

boundary and the right constant tensile deformation are implemented in the neural network, as185

𝑢𝑥(𝑡) = 𝑁𝑥
(

𝐱, 𝑡;𝜑𝑥
)

⋅ 𝑥 ⋅ (𝑥 − 10) + 𝑥∕10,

𝑢𝑦(𝑡) = 𝑁𝑦
(

𝐱, 𝑡;𝜑𝑦
)

⋅ 𝑥. (21)

The time increase is Δ𝑡 = 1.0 s for each viscoelastic training. Fig. 4b compares the PINN-predicted stress distribution186

against FEM results, showing good agreement overall, with some deviations near the stress concentration at the fixed187

end.188
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Fig. 4. Viscoelastic creep and stress relaxation cases solved by PINN. (a) The schematic diagram of stress relaxation of
a cantilever. The left boundary is fixed, and the right is fixed horizontally after stretching for a displacement Δ𝐿. (b)
Comparison of the stress relaxation results at the time 𝑡 = 3𝜏 from FEM and PINN. (c) The schematic diagram of creep
of a cantilever. The left boundary is fixed, and the right boundary is subjected to a horizontal uniformly distributed tensile
force. (d) Comparison of the creep results at the time 𝑡 = 3𝜏 from FEM and PINN. (e) The training dynamics of the
energy-based PINN. The potential energy loss decreases as training progress. Small oscillations may occur during the
convergence process, which are brought in by the optimization algorithm itself.

The same beam geometry and material properties are used for tensile creep simulation (Fig. 4c). A constant tensile189

force corresponding to pressure 𝑝 = 0.4 Pa is applied to the right end (𝑥 = 𝐿) for 𝑡 ≥ 0. This traction boundary190

condition is included via the external potential which equals 𝑝𝑢𝑟ℎ. The displacement boundary is implemented in the191

neural network, as192

𝑢𝑥(𝑡) = 𝑁𝑥
(

𝐱, 𝑡;𝜑𝑥
)

⋅ 𝑥,

𝑢𝑦(𝑡) = 𝑁𝑦
(

𝐱, 𝑡;𝜑𝑦
)

⋅ 𝑥. (22)

The viscoelastic creep displacement obtained from the PINN agree well with the finite element results (Fig. 4d).193

These benchmark results demonstrate that the implemented energy-based PINN framework, using an incremental194

time-stepping approach, accurately captures the fundamental time-dependent responses of viscoelastic materials.195
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3.4. Oscillatory Convergence of Neural Network196

An interesting characteristic observed during the training of energy-based PINN is the oscillatory behavior in the197

convergence of the loss function or predicted displacements (Fig. 4e). These oscillations arise from the dynamics198

of the gradient descendant optimizer (e.g., SGD and Adam), which is very common during the deep learning.199

Such oscillations can facilitate escape from poor local minima but they may impede stable convergence during later200

optimization stages. In contrast, such oscillatory behavior may be advantageous for capturing phenomena like buckling201

in viscoelastic materials.202

Classical numerical methods often require explicit artificial perturbations or initial imperfections to initiate203

buckling bifurcation from a perfect equilibrium path. We hypothesize that the inherent training oscillations within the204

energy-based PINN can act as a form of natural, internal perturbation. As the optimizer explores the energy landscape205

near a bifurcation point (where the landscape topology changes), these numerical oscillations can be sufficient to206

nudge the solution off the unstable primary path and guide it towards the physically stable, lower-energy buckled207

configuration. The potential applications are explored further in next sections.208

4. Creep Buckling Analysis of Viscoelastic Structures via PINN209

This section presents numerical results for creep buckling of viscoelastic structures using the energy-based,210

incremental PINN. We demonstrate the effectiveness of this approach on two benchmark problems: (1) the creep211

buckling of a viscoelastic cantilever beam and (2) the creep buckling of a thin cylindrical shell under axial compression.212

A particular focus is placed on assessing the potential for PINN to capture instability-driven deformations by leveraging213

inherent training dynamics, potentially obviating the need for artificial perturbations often required in traditional214

methods. These examples highlight the capability of PINN to predict the time-dependent deformation and stability215

limits of viscoelastic structures.216

4.1. Creep Buckling of a Viscoelastic Cantilever Beam217

Before analyzing the time-dependent creep buckling, we first validated the capability of our energy-based PINN218

framework to capture purely elastic buckling instabilities. We simulated the buckling of the cantilever beam geometry219

described in Fig. 5a, but using a hyperelastic constitutive model (described by Eqs. (1) and (2)) reflecting the material’s220

instantaneous elastic response under axial compression. The framework successfully predicted the Euler buckling mode221

shape, showing good agreement with finite element analysis (Fig. S1). Notably, the buckling bifurcation was captured222

naturally during the optimization process without requiring predefined geometric imperfections. This successful elastic223

benchmark provides confidence in the framework’s ability to handle geometric nonlinearities relevant to buckling224
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(Appendix A). Besides, as supporting evidence, simulations performed with a sub-critical load showed only minor225

oscillations during training without leading to buckling, as detailed in Appendix B.226

Fig. 5. Creep buckling of a cantilever beam under axial compression. (a) Schematic diagram of a compressed cantilever
beam. (b) Uniform discretization of the beam. (c) Displacement in the y-direction of the creep buckling cantilever beam
at different times obtained from PINN under pressure 2e − 2 Pa, with Adam optimizer and learning rate 5e − 3. (d)
Displacement in y-direction obtained from the Fourier feature-PINN (FF-PINN). The FF-PINN has three layers, and the
feature number of each layer is 64 in this study. (e) Deformed cantilever beam obtained from FEM under pressure 2e − 2
Pa, with initial geometric imperfections. (f) Pointwise error of the y-displacement obtained from PINN and FEM at 𝑡 = 2𝜏.
The error corresponds to the square error. (g) A comparison of the time-deflection curves obtained from PINN and FEM.

Next, we consider the creep buckling behavior of a viscoelastic cantilever beam under uniaxial compression, as227

illustrated in Fig. 5a. The beam has height ℎ=1.0 m and length 𝐿=10 m, with its left end clamped while the right end228

is subjected to a constant compressive load in the axial direction. The beam has the same mechanical parameters as229

the benchmark simultions of viscoelastic creep and stress relation, that is, the moduli are 𝐸∞ = 4 Pa, 𝐸1 = 6 Pa, the230

viscosity parameter is 𝜉 = 18 Pa⋅s, and the Poisson’s ratio is 𝜈 = 0.35. The pressure applied in the 𝑥-direction is set to231

𝑝 =2e-2 Pa (always kept in the 𝑥 direction), inducing time-dependent deformation and eventual buckling due to creep232

effects. Uniform collocation points discretize the domain, as shown in Fig. 5b. The 𝑥-direction displacement of the free233

end 𝑢𝑟 is obtained from the network, and the external potential equals 𝑝𝑢𝑟ℎ, which is included in the potential energy.234

The fixed left end boundary is implemented as Eq. 22. The simulation proceeds incrementally with time steps Δ𝑡 = 1235

s.236
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The evolution of the deformation over time is shown in Fig. 5c-e. As creep deformation progresses, the beam237

undergoes significant lateral displacement, leading to buckling. To assess the effect of Fourier feature embeddings on238

representational capacity, we computed the solution using a Fourier-Feature PINN (FF-PINN) [54], as shown in Fig.239

5d. The FF-PINN produces deformation fields that are qualitatively similar to those of the baseline PINN and does240

not lead to a noticeable improvement for this problem. This is expected because the physical response is dominated241

by low-order global buckling modes, so the added high-frequency expressivity has limited influence on accuracy. The242

creep buckling with FEM is predicted by adding some initial geometric imperfections (Fig. 5e) under the same axial243

pressure. A quantitative comparison of the methods is provided in Fig. 5f, which shows the squared pointwise error244

fields between the PINN prediction and FEM solution at 𝑡 = 2𝜏. Fig. 5g compares the normalized mid-span deflection245

over time. The time–deflection curves of the PINN and FEM do not coincide at every time point once the structure246

enters the post-buckling regime. This discrepancy is expected: after the onset of buckling, the mechanical system247

becomes highly sensitive to small perturbations, and the post-buckling path is no longer unique. In FEM, the specific248

imperfection introduced to trigger buckling determines which post-buckling branch is followed. While in the PINN249

approach, the optimizer-induced perturbations naturally select a different, though mechanically admissible, buckling250

trajectory. Because these post-critical paths correspond to distinct but energetically similar equilibrium branches,251

perfect time-point agreement between PINN and FEM is not expected. Importantly, both methods predict the same252

buckling onset, overall mode shape, and qualitative evolution, which is a meaningful benchmark for creep-induced253

instability.254

The PINN solution captures the gradual accumulation of strain and the onset of instability. To validate the predicted255

buckling behavior, we compare the eigenvalue of the viscoelastic cantilever with two reference cases obtained from256

FEM simulations (ABAQUS, plane strain analysis with CPE8R elements): one is modeled as an elastic material with257

initial modulus 𝐸0 = 𝐸∞ + 𝐸1, representing the upper bound of stiffness, and another is modeled with its long-term258

modulus𝐸 = 𝐸∞, serving as a baseline reference. The eigenvalue of a beam with the infinity modulus (𝐸∞) is obtained259

from finite element simulation, which is 9.36e − 3, and the beam with initial stiffness (𝐸0) is 2.34e − 2. The buckling260

pressure 2e − 2 for viscoelastic cantilever is between these two elastic conditions. These predictions confirm that the261

buckling pressure of the viscoelastic cantilever falls within the expected range between two elastic cases. Crucially,262

the buckling behavior in the PINN simulation emerged without introducing any explicit geometric imperfections or263

transient load perturbations. The transition to the buckled state appears to be triggered by the inherent dynamics264

of the optimizer exploring the solution space near the bifurcation point, consistent with the hypothesis outlined in265

Section 3.4. As supporting evidence, simulations performed with a sub-critical load (𝑝 = 5e − 3 < 𝑝cr) showed only266

minor oscillations or shaking during training without leading to buckling, as detailed in Appendix B. This highlights267

a potential advantage of PINN for stability analysis.268
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4.2. Creep Buckling of a Thin Cylindrical Shell under External Pressure269

Thin cylindrical shells under external pressure are susceptible to time-dependent instabilities due to viscoelastic270

creep. Due to symmetry, we model only a quarter of the cylindrical shell with appropriate symmetry boundary271

conditions applied on the cut surfaces (𝜃 ∈ [0, 𝜋∕2]). The schematic representation of the problem is depicted in272

Fig. 6a, where an initially quarter cylindrical shell of outer radius 𝑟𝑜 = 1 m and thickness 𝑎 = 0.1 m is subjected to a273

uniform external pressure 𝑝 = 1e − 2 Pa. The moduli are 𝐸∞ = 4 Pa, 𝐸1 = 6 Pa, the viscosity parameter is 𝜉 = 18274

Pa⋅s, and the Poisson’s ratio is 𝜈 = 0.35.275

The discretization of the shell domain is shown in Fig. 6b, where the uniform sampling points are used to resolve276

the spatial dependence of the displacement field. Sample points on the outer surface of the shell are used to calculate the277

outer surface displacement. The implement of this problem in PINN is under the cylindrical coordinate. The boundary278

condition is introduced to the neural network as279

𝑢𝜃 = 𝑁 (𝑟, 𝜃;𝜑) ⋅ sin 𝜃 ⋅ cos 𝜃, (23)

and the time increase is Δ𝑡 = 0.5 s for each viscoelastic training.280

Fig. 6. Creep buckling of a thin cylinder with outside radial pressure. (a) The schematic diagram of a compressed quarter
cantilever cylinder, with the pressure equals to 1e − 2. (b) The discretization of the cylinder, and the integration at the
outer surface. (c) The outer surfaces at different times. (c) Deformed quarter cylinder at different times. The forth order
eigenvalue of a beam with the infinity modulus (𝐸∞) is obtained from finite element simulation (Plain strain, CPE8R),
which is 6.44e−3, and the cylindrical shell with initial stiffness (𝐸0) is 1.61e−2. The buckling pressure 1e−2 for viscoelastic
cantilever is between these two elastic conditions.
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The evolution of the shell’s deformation is presented in Figs. 6c and 6d. In Fig. 6c, the deformation profile of281

the outer surface is plotted at different time instances, illustrating the progressive lateral deflection and the onset of282

buckling. The initially circular shell gradually deviates from its original shape due to viscoelastic creep, eventually283

leading to instability. The corresponding displacement fields at specific time snapshots are visualized in Fig. 6d.284

At 𝑡 = 0+, the shell exhibits a nearly uniform radial contraction due to the applied pressure. As creep deformation285

progresses, localized bending deformations emerge, which intensify over time, culminating in a pronounced buckled286

shape at 𝑡 = 4𝜏. To validate the PINN predictions, the buckling pressure obtained from the viscoelastic simulation287

is still compared with two classical elastic buckling solutions and FEM results. Case A: The shell is modeled as an288

material with initial modulus (𝐸 = 𝐸∞ + 𝐸1). Case B: The shell is modeled with its long-term elastic modulus289

(𝐸 = 𝐸∞). The comparison indicates that the buckling pressure of the viscoelastic cylinder within the expected range290

between two elastic cases.291

The results presented for both the cantilever beam and the thin cylindrical shell confirm that the proposed PINN292

framework is a viable and accurate tool for predicting creep buckling phenomena of viscoelastic structures. The293

findings consistently suggest that PINN can capture these instability-driven deformations naturally through their294

intrinsic training dynamics, potentially streamlining stability analysis compared to traditional methods requiring295

explicit perturbations. Furthermore, we also proved theoretically how the Adam optimizer brings in perturabation296

for buckling (Appendix C.). This capability highlights the significant potential of PINN for analyzing time-dependent297

instabilities in diverse engineering and biomechanics applications.298

To evaluate the practical viability of the proposed method, we compare the wall-clock time of the PINN simulations299

with those of equivalent FEM simulations performed on the same workstation. Table 1 summarizes the computational300

cost for all benchmark problems. All problems are modelled on a CPU AMD Ryzen 7 5700G (3.80 GHz). Although301

the current PINN implementation is not computationally faster than FEM, it provides capabilities, such as mesh-302

free deformation, natural instability capture, and robust handling of evolving geometry, that are difficult for FEM303

to replicate. These complementary strengths justify PINN development despite the higher computational expense.304

Additionally, inference of the PINN is extremely fast, requiring only a forward evaluation of the neural network. The305

trained model can also be fine-tuned for nearby parameter regimes at a very low additional cost, amortizing the initial306

training effort across multiple related problems.307

5. PINN for Viscoelastic Growth and Buckling of Soft Biological Tissues308

Building upon the validated energy-based PINN framework, we now address the complex interplay between309

viscoelastic mechanics and growth in biological tissues, focusing on morphogenesis in cylindrical geometries.310

Structures like airways[45, 55], blood vessels, and intestines (Fig. 7a), undergo growth driven by cellular proliferation311
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Table 1
A computational cost comparison of PINN and FEM for viscoelastic creep-buckling

Problem Method Mesh/Network size CPU time for each time step
Cantilever beam buckling FEM 1000 elements < 1 s
Cantilever beam buckling PINN 3 × 20 neurons Train:≃ 3.8 mins; Inference: < 1 s
Cylindrical shell buckling FEM 1500 elements < 1 s
Cylindrical shell buckling PINN 3 × 20 neurons Train:≃ 3.5 mins; Inference: < 1 s

and extracellular matrix remodeling. Understanding the mechanics governing these processes, particularly how growth312

patterns can lead to shape changes and instabilities, is vital for developmental biology, disease modeling, and tissue313

engineering. This section employs our energy-based PINN methodology to simulate growth in a viscoelastic cylindrical314

shell with outer radius 𝑅𝑜 = 1 cm and inner radius 𝑅𝑖 = 0.9 cm, and the outer surface is fixed, as depicted in Fig. 7b.315

Due to assumed symmetry, we model half of the cylinder (𝜃 ∈ [0, 𝜋]) with symmetry boundary conditions on the cut316

surfaces (Fig. 7b right). The material behavior is described by the viscoelastic constitutive model (specified in Section317

2), with instantaneous short-term modulus 𝐸0 = 𝐸∞ +𝐸1 = 100 kPa, long-term modulus 𝐸∞ = 40 kPa, the viscosity318

parameter 𝜉 = 18 kPa⋅s, and the Poisson’s ratio 𝜈 = 0.49.319

In the implementation of energy-based PINN which minimizes the system’s potential energy functional by320

approximating the displacement field, the total potential energy at time 𝑡 is written as321

Π = ∫𝑉
𝐺(𝑡)
2

(

𝐼𝑎1 − 3 − 2 ln 𝐽𝑎
)

+
𝜆(𝑡)
2

(

𝐽𝑎 − 1
)2 d𝑉 + ∫𝑉

𝐽𝑔𝑏
𝑔
𝑖 𝑔𝑖 d𝑉 , (24)

where the deformation gradient tensor is decomposed using Eq. (15), 𝐼𝑎1 = trace(𝐅𝑎 ⋅ 𝐅𝑇
𝑎 ), 𝐽𝑎 = det(𝐅𝑎), and322

𝐽𝑔 = det(𝐅𝑔). The solutions of displacement field 𝑢(𝑡), stress field 𝜎(𝑡) and growth ratio 𝑔𝑖(𝑡) are found at discrete323

time points 𝑡𝑘. The process repeats for the next time step. To advance the growth ratio 𝑔𝑖 from time 𝑡 to 𝑡 + 𝛿𝑡, it is324

calculated using Eq. (16), i.e.,325

𝑔𝑖(𝑡 + 𝛿𝑡) = 𝑔𝑖(𝑡) exp[𝑘(𝜎𝑖 + 𝑏𝑔𝑖 )𝛿𝑡], (25)

where 𝛿𝑡 is the time increment for each iteration.326

5.1. Uniform Growth of a Cylindrical Tissue327

First, we consider that the tissue grows uniformly in both the radial and axial directions. The growth is assumed328

isotropic, implying the same growth rate in all directions, that is, the growth law is written as329

𝑔̇ = 𝑘(𝜎𝑟 + 𝜎𝜃 + 𝑏𝑔)𝑔, (26)
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Fig. 7. Cylinder symmetric growth with outer surface fixed. The growth process will proceed to the end, i.e., when the
accumulated residual stress is equal to 𝑏𝑔. (a) Many biological tissues can be seen as a cylinder, e.g., the airway and blood
vessel. (b) The schematic diagram and discretization of a semi-cylinder. (c) The total displacement at different times with
biochemical stress 𝑏𝑔 = 0.1𝐸0. (d) The comparison of growth ratio of the case (c) between PINN and FEM (ABAQUS
with CPE4RH elements and user subroutine UMAT) results. (d) The comparison of growth ratio of the case (c). (e) The
total displacement at different times with biochemical stress 𝑏𝑔 = 0.2𝐸0. (f) The comparison of growth ratio of the case
(e).

where the parameters are taken as 𝑘 = 0.5 s−1 ⋅kPa−1, 𝑏𝑔 = 10 kPa. The boundary condition is introduced to the neural330

network as331

𝑢𝑟 = 𝑁 (𝑟, 𝜃;𝜑) ⋅ (𝑟 − 1), (27)
𝑢𝜃 = 𝑁 (𝑟, 𝜃;𝜑) ⋅ sin 𝜃 ⋅ cos 𝜃. (28)

Z. Lin et al.: Preprint submitted to Elsevier Page 18 of 30



PINN for Viscoelasticity

Each viscoelastic training has 400 iterations, thus, the time increase is Δ𝑡 = 400𝛿𝑡 for each viscoelastic training. In332

this simulation, Δ𝑡 = 1 s.333

Figs. 7c (𝑏𝑔 = 0.1𝐸0) and 7e (𝑏𝑔 = 0.2𝐸0) depict the displacement magnitude at different times, where 𝜏 = 3 s is the334

relaxation time. The color plots confirm that the cylindrical tissue expands uniformly in the radial and axial directions,335

reflecting isotropic growth. No signs of instability (wrinkling or buckling) are observed, as expected for uniform growth336

conditions. In Figs. 7d and 7f, we compare the growth ratio over time obtained from the PINN approach against FEM337

simulations. The results show excellent agreement between PINN and FEM, demonstrating the accuracy and robustness338

of the proposed approach. For tissues such as blood vessels or airways, uniform growth typically corresponds to healthy,339

symmetric development, free from pathological remodeling or localized aneurysmal expansions. PINN provide a mesh-340

free and flexible framework to study these scenarios without requiring heavy computational meshing and complex341

programming (e.g., UMAT for ABAQUS). Although no instability occurs under uniform growth, the development342

process may introduce localized deformations, potentially leading to wrinkling or bifurcation. This should consider343

differential growth at different directions, which can trigger complex pattern formations.344

5.2. Differential Growth, Buckling, and Morphogenesis345

In many biological systems, tissues undergo differential growth, wherein growth rates vary across different346

directions or tissue layers. This disparity often leads to mechanical instabilities that manifest as wrinkling, folding, or347

buckling. A well-known example is the morphogenesis of the chick foregut, which transitions from a relatively smooth348

cylindrical structure into a series of complex folds and luminal patterns over embryonic days (E8 to E17), as illustrated349

in Fig. 8a. These folded morphologies are critical for increasing surface area and optimizing nutrient transport350

and absorption. Consequently, understanding and predicting growth-induced buckling is essential for developmental351

biology, tissue engineering, and the design of bio-inspired soft materials.352

For the differential growth, the tissue mechanical and geometrical parameters are the same as previous section. But353

the growth law is written as354

𝑔̇𝑟 = 𝑘(𝜎𝑟 + 𝑏𝑔𝑟 )𝑔𝑟, (29)
𝑔̇𝜃 = 𝑘(𝜎𝜃 + 𝑏𝑔𝜃)𝑔𝜃 , (30)

where the parameters are taken as 𝑘 = 0.5 s−1 ⋅ kPa−1, and 𝑏𝑔𝑟 = 𝑏𝑔𝜃 = 𝑏𝑔 in this simulation. This disparity in growth355

rates can lead to significant residual stresses and mechanical instabilities that shape the tissue morphology over time.356

During the simulation, the stress magnitude is set no greater than 𝑏𝑔 .357

Figs. 8b-d illustrate the time evolution of the cross-sectional shapes. We vary the biochemical driving force (𝑏𝑔)358

to represent different levels of differential expansion. For the mild differential growth (Fig. 8b), the cylinder remains359
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Fig. 8. Cylinder growth with different growth ratios at the radial and circumferential directions. (a) Transverse sections over
time in the chick foregut, adapted from [56]. (b) Growth morphology at different times with 𝑏𝑔 = 0.1𝐸0, (c) 𝑏𝑔 = 0.2𝐸0,
and (d) 𝑏𝑔 = 0.3𝐸0.

largely axisymmetric at early times, but slight radial undulations emerge as growth progresses. The folds are shallow,360

indicating that while differential growth initiates instability, the magnitude of the growth mismatch is not sufficient to361

induce large-amplitude wrinkling. The moderate differential growth (Fig. 8c) shows more pronounced folding patterns.362
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The radial expansion outpaces the circumferential expansion, creating residual hoop stresses that drive the tissue to363

buckle inward and outward periodically around the circumference. In Fig. 8d, the shell rapidly develops deep, well-364

defined folds at relatively early times (𝑡 ≃ 𝜏). During the differential growth, the number of folds may also increase.365

This bifurcation is common in tissue development [45, 12]. Fig. 8a depicts cross-sectional slices of a chick foregut at366

different embryonic days. The progressive formation of circumferential folds resembles the morphologies observed in367

our PINN simulations under moderate to high differential growth. Although the exact geometry and material properties368

of embryonic tissues are far more complex, often involving multilayered structures and active cellular processes, the369

PINN-based model provides a mechanistic view of how differential growth can induce wrinkling and folding patterns370

reminiscent of in vivo development.371

Consistent with the creep buckling results, the energy-based PINN framework captured the buckling instabilities372

leading to these patterns without requiring artificial perturbations. The optimizer navigating the energy landscape373

appears to naturally find the lower-energy buckled states when the initial configuration becomes unstable. These374

applications highlight the capability of energy-based PINN to handle complex coupled physics, including growth and375

viscoelasticity, and to naturally capture instabilities during the energy minimization process. This underscores their376

potential as a powerful computational tool for biomechanics and developmental biology.377

6. Discussion378

In this study, we developed and applied an energy-based PINN framework, utilizing the principle of minimum379

potential energy, to simulate complex viscoelastic phenomena. These included creep, stress relaxation, viscoelastic380

creep buckling, and growth-induced morphogenesis in cylindrical structures. By training neural networks to find381

displacement fields that minimize the system’s potential energy functional within an incremental time-stepping382

scheme, our approach offers a mesh-free and flexible alternative to conventional numerical methods for these time-383

dependent problems. Furthermore, as demonstrated, it allows for the capture of buckling instabilities without the384

manual introduction of perturbations often required in finite element analyses.385

A key highlight of our work is the natural emergence of buckling instabilities in creep simulations. Unlike traditional386

methods that typically rely on artificially imposed imperfections to trigger buckling, the inherent training dynamics of387

the neural network optimizer exploring the energy landscape appear to serve as a built-in mechanism for capturing the388

transition from stable creep to buckled configurations. This characteristic is particularly advantageous when modeling389

viscoelastic structures, where the gradual accumulation of strain leads to complex instability patterns. Furthermore, the390

extension of our framework to simulate tissue growth and morphogenesis underscores its versatility. By incorporating391

differential growth rates, the model successfully replicates the formation of intricate folding patterns reminiscent of392

those observed in biological tissues, thereby providing valuable insights into the mechanics of morphogenesis and393
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offering potential applications in tissue engineering and bio-inspired design. In this study, we also using Fourier394

feature embeddings into the PINN. The results show that the FF-PINN does not significantly improve the accuracy395

or convergence for the viscoelastic creep-buckling problems considered in this work. We think the main reason is that396

the dominant physical behavior involves low-order global buckling modes mainly, which do not require high-frequency397

representational capacity.398

Despite these promising advances, the study also reveals several limitations that warrant further investigation. For399

instance, while the framework effectively captures a buckling mode through simulation, it is currently not equipped400

to conduct a comprehensive eigenvalue buckling analysis as performed by traditional finite element methods, which401

can identify multiple potential buckling modes and their associated critical conditions. The natural perturbation is a402

strong, evidence-based hypothesis that needs further theoretical investigation into the link between optimizer dynamics403

and bifurcation theory. Additionally, the iterative nature of the incremental viscoelastic training loop, particularly404

when fine time-step resolution is required, may lead to significant computational cost compared to highly optimized405

implicit FEM solvers. These suggest that further optimization of the training process—possibly through adaptive time-406

stepping strategies or enhanced neural network architectures—will be necessary to fully exploit the potential of PINN407

in highly nonlinear or multiscale scenarios. Moreover, operator learning would amortize the computational cost of408

many-query tasks (design optimization, uncertainty quantification, digital twins), but applying it to nonlinear, history-409

dependent viscoelasticity introduces new challenges: the input space must represent the past deformation history or410

internal variables, training requires large, representative ensembles of solutions across parameter and history space,411

and careful incorporation of energy/thermodynamic constraints is necessary to preserve physical consistency. In future412

work, we can investigate strategies to represent memory in operator architectures, to reduce data requirements via413

transfer learning, and to combine energy-based losses with operator training to retain stability and thermodynamic414

consistency.415

In summary, our study demonstrates that energy-based physics-informed neural networks hold significant promise416

for advancing the simulation of viscoelastic phenomena and growth-induced instabilities. The ability to naturally417

capture buckling behavior without external perturbations, combined with the flexibility to model complex tissue growth418

patterns within an energy-minimization framework, represents a noteworthy innovation in computational mechanics.419

However, addressing current limitations related to comprehensive stability analysis and computational efficiency will420

be essential for broadening the applicability of this approach in both research and practical engineering applications.421
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Appendix A Validation Benchmark: Buckling Mode of a Hyperelastic Cantilever Beam433

To verify the fundamental capability of the implemented energy-based PINN framework to capture structural434

buckling, we simulated the classic Euler buckling of a hyperelastic cantilever beam under axial compression. The435

cantilever beam geometry (length 𝐿 = 10 m, height ℎ = 1 m, assuming plane strain) and boundary conditions436

(clamped at 𝑥 = 0, axial pressure applied at 𝑥 = 𝐿) were identical to those described in Section 4.1 of the main437

text. The material was modeled as compressible Neo-Hookean hyperelastic (described by Eqs. (1) and (2)), using the438

instantaneous elastic properties of the viscoelastic material: Young’s Modulus 𝐸 = 𝐸1 + 𝐸∞ = 10 Pa and Poisson’s439

ratio 𝜈 = 0.35. The theoretical Euler critical buckling pressure for this configuration can be calculated by Eq. (13) ,440

which is 2.06e−2 Pa. The eigenvalue analysis of FEM (with ABAQUS, Buckle step, element CPE8R) is 2.34e−2 Pa441

for first buckling mode and 0.203 Pa for second buckling mode.

Fig. S1. The buckling modes predicted by (a) PINN and (b) FEM.

442
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Fig. S1 visualizes the buckling mode shape predicted by the PINN just after the bifurcation point, which matches the443

expected first and second Euler buckling modes for a cantilever beam. Significantly, this buckling mode was captured444

without introducing any artificial geometric imperfections; the numerical process of finding the minimum energy state445

successfully navigated the bifurcation. However, capturing higher-order buckling modes was not achieved with the446

current setup and requires further investigation.447

Appendix B Simulation under Sub-Critical Pressure448

To further investigate the role of neural network training dynamics in capturing buckling phenomena, we performed449

an additional simulation of the hyperelastic cantilever beam under a load known to be below the critical buckling450

threshold for the simulated time frame. The geometry, material properties, boundary conditions, and the energy-based451

incremental PINN framework were identical to those used for the buckling analysis in Appendix A. The applied452

compressive pressure is set to a sub-critical value of 𝑝 = 1e−2 Pa, which is smaller than the critical buckling pressure453

(𝑝𝑐𝑟 = 2.34e − 2 Pa).454

Fig. S2. The deformed cantilever beam when the compressive pressure is lower than the buckling threshold. (a) The
displacement in the y-direction of the deformed beam. (b) The convergence plot of training process.

Fig. S2a shows the predicted displacement at the 𝑦−direction of the cantilever beam. Unlike the simulation under455

the critical load (Fig. 5c), there is no sign of rapid divergence or acceleration in deflection characteristic of buckling456

instability. The beam only develops some oscillatory deformation under perturbation. Fig. S2b shows a representative457
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convergence plot (the loss vs. training iterations). Oscillations during the optimization process are still evident, similar458

in nature to those observed during the buckling simulations.459

The results demonstrate that even though training oscillations are present during the optimization process (as shown460

in Fig. S2b), they do not lead to buckling instability when the applied load is below the critical threshold. This provides461

strong supporting evidence for the hypothesis presented in Sections 3.4 and 4.1: the training dynamics act as physically462

relevant perturbations that can trigger buckling only when the system is near its stability limit. They do not appear to463

be arbitrary numerical noise that destabilizes an otherwise stable configuration.464

Appendix C Natural dynamics of Adam optimizer465

The Adam optimizer combines the momentum algorithm and adaptive scaling scheme during training [57]. It466

updates the parameters as follows:467

𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√

𝑣𝑡 + 𝜖
⋅ 𝑚̂𝑡, (31)

where 𝜃 represents the trainable parameters in neural networks, 𝛼 represents the learning rate, 𝜖 is a numerical stabilizer468

that prevents division by zero and is normally of 1 × 10−8, 𝑚̂𝑡 and 𝑣𝑡 are the first and second momentum, respectively.469

The two momentum factors are updated by470

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
,

𝑣𝑡 =
𝑣𝑡

1 − 𝛽𝑡2
,

(32)

where471

𝑚𝑡+1 = 𝛽1 ⋅ 𝑚𝑡 + (1 − 𝛽1) ⋅ 𝑔𝑡,

𝑣𝑡+1 = 𝛽2 ⋅ 𝑣𝑡 + (1 − 𝛽2) ⋅ 𝑔2𝑡 .
(33)

In Eq.33, 𝛽1 and 𝛽2 are two parameters in the Adam optimisers and are defaultly set as 0.9 and 0.999, 𝑔𝑡 is the gradient472

of loss function, e.g., the overall energy of the system473

𝑔𝑡 = ∇𝜃Π. (34)
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It is clear to find that the correction of the two momenta is effective at the beginning of training. Given that the474

training of PINN for viscoelastic problems require large number of training epochs, we simplify and ignore Eq.32 in475

the following analysis.476

Since 𝑚𝑡 and 𝑣𝑡 are all initialised as zero vectors, Eq.33 can be also expressed as477

𝑚𝑡+1 = (1 − 𝛽1)
𝑡

∑

𝑛=0
𝛽1

𝑛 ⋅ 𝑔𝑡−𝑛

= (1 − 𝛽1)
𝑡

∑

𝑛=0
𝛽1

𝑛 ⋅ ∇𝜃Π𝑡−𝑛

𝑣𝑡+1 = (1 − 𝛽2)
𝑡

∑

𝑛=0
𝛽2

𝑛 ⋅ 𝑔2𝑡−𝑛

= (1 − 𝛽2)
𝑡

∑

𝑛=0
𝛽2

𝑛 ⋅ (∇𝜃Π𝑡−𝑛)2.

(35)

By substituting Eq.35 into Eq.31, one can obtain478

𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√

𝑣𝑡 + 𝜖
⋅ 𝑚𝑡+1

= − 𝛼
√

𝑣𝑡 + 𝜖
⋅ (1 − 𝛽1)

𝑡
∑

𝑛=0
𝛽1

𝑛 ⋅ (∇𝜃Π𝑡−𝑛)

= −
𝛼(1 − 𝛽1)
√

𝑣𝑡 + 𝜖
⋅ (∇𝜃Π𝑡 +

𝑡
∑

𝑛=1
𝛽1

𝑛 ⋅ ∇𝜃Π𝑡−𝑛)

(36)

Let 𝜏𝑡 =
√

𝑣𝑡+𝜖
(1−𝛽1)

and Φ𝑡 = −
∑𝑡

𝑛=1 𝛽1
𝑛 ⋅ ∇𝜃Π𝑡−𝑛, Eq.36 can be simplifed and formulated as479

𝜃𝑡+1 − 𝜃𝑡 = − 𝛼
𝜏𝑡

⋅ (∇𝜃Π𝑡 − Φ𝑡). (37)

Eq.37 is the stepwise parameter update rule. The continuous version of Eq.37 (when 𝛼 → 0) [58] is given as480

𝜏𝑡 ⋅ 𝜃̇𝑡 = −∇𝜃Π𝑡 + Φ𝑡,

⇒0 = −∇𝜃Π𝑡 − 𝜏𝑡 ⋅ 𝜃̇𝑡 + Φ𝑡.
(38)

This equation is similar to the governing equation of the Langevin dynamics, which reads481

𝑀𝑥̈ = −∇𝑈 (𝑥) − 𝛾𝑥̇ + 𝑅𝑡, (39)

Z. Lin et al.: Preprint submitted to Elsevier Page 26 of 30



PINN for Viscoelasticity

where 𝑀 is the mass of a particle in the Langevin dynamics, 𝑈 (𝑥) denotes a potential, 𝑅𝑡 is a random white noise482

satisfying the Gaussian distribution. As observed, Eq.38 lacks the inertia term compared to Eq.39 and therefore is483

known as the underdamped condition. During the training processes, the trainable parameters are updated by the484

Langevin dynamics, approching the minimal of energy potential. Meanwhile, the weighted mean of previous energy485

gradients, Φ𝑡, acts as a perturbation during the training, preventing the trainable paramters trapped by saddle points.486

Moreover, 𝜏 is equivalent to the damper 𝛾 . From the dynamics point of view, this damper stabilises training and reduces487

loss oscillations. From the viewpoint of deep learning, 𝜏 is also an adaptive scaling vectors that balance the learning488

rate of different trainable parameters, assigning slowly-changing parameters a small damper and a large damper for489

frequently-changing parameters.490
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